Gas law problem (changing volume, temperature and pressure)

Click For Summary
The discussion revolves around a gas law problem involving the calculation of gas volume under varying temperature and pressure conditions. The initial conditions are identified as 40°C and 75mmHg, while the final conditions are at standard temperature and pressure (STP). Participants express confusion regarding the correct interpretation of STP, with some mentioning the need to clarify whether 750mmHg or 760mmHg is used as the standard pressure. The conversation emphasizes the importance of using the ideal gas equation and the combined gas law to solve the problem, while also noting potential discrepancies in the question's provided answers. Overall, the thread highlights the complexities of gas law calculations and the necessity for precise definitions in scientific problems.
  • #31
Tasha Clifford said:
I still want to know how i could go about with the problem using the ideal gas equation as you said
##P_1V_1 = nRT_1##. Solve your initial condition to find the number of moles of the gas. Since this does not change, plug that into ##P_2 V_2 = nRT_2##.

-Dan
 
  • Like
Likes Tasha Clifford
Physics news on Phys.org
  • #32
topsquark said:
##P_1V_1 = nRT_1##. Solve your initial condition to find the number of moles of the gas. Since this does not change, plug that into ##P_2 V_2 = nRT_2##.

-Dan
Ok ✅
 
  • #33
topsquark said:
##P_1V_1 = nRT_1##. Solve your initial condition to find the number of moles of the gas. Since this does not change, plug that into ##P_2 V_2 = nRT_2##.

-Dan
Please how did you type the equation , i see it as( ##P_1V_1 = nRT_1##)
but it actually appears in the message itself as the ideal gas equation ??
 
Last edited:
  • #34
Tasha Clifford said:
Please how did you type the equation , i see it as( ##P_1V_1 = nRT_1##)
but it actually appears in the message itself as the ideal gas equation ??
We use a version of LaTeX here. The basic stuff is actually pretty simple. We have an actual Forum but see this link here to get you started.

-Dan
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
16
Views
4K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
4
Views
2K
Replies
12
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K