Gauss's Law with NONuniform E field

AI Thread Summary
The discussion revolves around calculating the net electric flux leaving a closed surface in a nonuniform electric field described by E = (2.70 + 2.20 x^2)i N/C. The participants clarify that the flux through the sides of the surface is zero due to the angle between the electric field and the normal vector being 90 degrees. They focus on the flux contributions from the two ends of the surface, with calculations showing E values at specific points and using the area to determine the flux. The total flux is computed by adding the contributions from both ends, leading to a final value of 5.097. The conversation emphasizes the importance of correctly applying the dot product in flux calculations and understanding when integration is necessary.
Alex G
Messages
24
Reaction score
0

Homework Statement


A closed surface with dimensions a = b = 0.400 m and c = 0.800 m is located as shown in the figure below. The left edge of the closed surface is located at position x = a. The electric field throughout the region is nonuniform and given by E = (2.70 + 2.20 x2)i N/C, where x is in meters.
https://www.webassign.net/serpse8/24-p-061.gif

A)Calculate the net electric flux leaving the closed surface.

Homework Equations



For a closed surface Integral of E(dot)dA = qenclosed/Epsilon0

The Attempt at a Solution



Obviously I will have to integrate the Electric field here. I began with the simple formula
Int(E dot dA) from 1.2 to 0 because the distance at the edge where the E field leaves is 1.2m out. I believe since the sides are all parallel to the E field those become 0.
So I tried integrating
2.70 + 2.20x^2 dA from 1.2 to 0
I believe dA is x^2 (a=b=x) and dA is the combined infinitesimal areas to produce LxW of the end of the box.
The angle between the exiting E field and the Normal to the plane at the end of the box are parallel thus negligible.
What's going wrong here :-/
 
Physics news on Phys.org
I do not quite follow you but you might not know that dA in the dot product E˙dA is a vector, normal to the surface and pointing outward from the slab. This dot product is equal to E*cos(φ)*dA where φ is the angle enclosed by E and dA and E and dA are the magnitudes of these vectors. At the sides of the slab, the normals of the surfaces are perpendicular to E so cos(φ)=0, the dot products cancel. At the bases, the planes located at x=0.4 and x=1.2, dA is parallel to the x axis. Its direction is opposite to E at x=a (φ=180°) and it points in the same direction as E at x=1.2 (φ=0). The magnitude of dA is dydz on these planes.


ehild
 
This might be a bit simplistic but at x=.4 E=3.02 and area=.16 or Flux=E*A*Cos(180)

at x=1.2 E=5.58 and area=.16 or flux=E*A*cos(0)

No flux through side surfaces just ends. Add the two fluxes to get total flux.

I get a total flux of 5.097
 
RTW69 said:
This might be a bit simplistic but at x=.4 E=3.02 and area=.16 or Flux=E*A*Cos(180)

at x=1.2 E=5.58 and area=.16 or flux=E*A*cos(0)

No flux through side surfaces just ends. Add the two fluxes to get total flux.

I get a total flux of 5.097

The procedure is OK, but check your E values.

At x=0, E=2.7+2.2*0.16=3.052
At x=1.2, E=2.7+2.2*1.44=5.868

ehild
 
X=.4; E=2.7+2.2*0.16=3.052, Area=.16; E=3.052*.16*Cos(180)=-.488 thanks for catching my mistake!
 
Wow thank you both, that was a lot easier than I thought. I suppose I'm just uncertain when I should integrate and when I shouldn't.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top