General relativity - Covariant Derivative Of F(R)

thecoop
Messages
15
Reaction score
0
In f(R) gravity as http://en.wikipedia.org/wiki/F(R)_gravity ,

i have problem with the term [ g_ab □ - ∇_a ∇_b ] F(R) , well

actually is [ ∇_b ∇_a - ∇_a ∇_b ] F(R) , but F is a function of Ricci Factor and Ricci Factor is expressed as a(t) ( scale factor ) . for the a = b = 0 i say this term becomes zero . is it true ?
 
Physics news on Phys.org
Can you re-write your post so that it makes (more) sense ?
 
I don't know anything about f(R) gravity theories, but that expression is clearly zero if the torsion tensor vanishes.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top