VinnyCee
- 486
- 0
Homework Statement
http://img396.imageshack.us/img396/2781/chapter8problem55oy6.jpg
For the circuit above, find v(t) for t\,>\,0.
Assume that v\left(0^+\right)\,=\,4\,V and i\left(0^+\right)\,=\,2\,A.
Homework Equations
i_c\,=\,C\,\frac{d\,v_c}{dt}
The Attempt at a Solution
I made a new diagram:
http://img507.imageshack.us/img507/4142/chapter8problem55part2zm4.jpg
i_1\,=\,C_1\,\frac{d\,V_{C_1}}{dt}
i_2\,=\,\frac{V_1\,-\,V_2}{2\,\Omega}
i\,=\,C_2\,\frac{d\,V_{C_2}}{dt}
KCL @ V_1) i_1\,+\,\frac{i}{4}\,-\,i_2\,=\,0C_1\,\frac{d\,V_{C_1}}{dt}\,+\,\frac{C_2}{4}\,\frac{d\,V_{C_2}}{dt}\,-\,\frac{V_1\,-\,V_2}{2\,\Omega}\,=\,00.2\,\frac{d\,V_{C_1}}{dt}\,+\,0.25\frac{d\,V_{C_2}}{dt}\,-\,V_1\,+\,V_2\,=\,0
KCL @ V_2) i\,+\,i_2\,=\,0C_2\,\frac{d\,V_{C_2}}{dt}\,+\,\frac{V_1\,-\,V_2}{2\,\Omega}\,=\,0\frac{d\,V_{C_2}}{dt}\,+\,V_1\,-\,V_2\,=\,0V_2\,=\,\frac{d\,V_{C_2}}{dt}\,+\,V_1Now substituting the KCL @ V_2 equation into the other equation:0.2\,\frac{d\,V_{C_1}}{dt}\,+\,1.25\,\frac{d\,V_{C_2}}{dt}\,=\,0Here I am stuck. I don't know how to proceed, any hints? I know that I am supposed to get a second order differential equation for the circuit, but where from?
Last edited by a moderator: