(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

I'm given the surface of revolution parametrized by [itex]\psi (t, \theta ) = (x(t), y(t)cos \theta, y(t)sin \theta )[/itex] where the curve [itex]\alpha (t) = (x(t),y(t))[/itex] has unit speed. Also given is that [itex]\gamma (s) = \psi (t(s), \theta (s))[/itex] is a geodesic which implies the following equations hold:

[tex]

\ddot{\theta} = -2 \frac{y'}{y} \dot{\theta} \dot{t} [/tex] and [tex] \ddot{t} = y y' \dot{\theta}^2

[/tex]

where

[tex]

y' = \frac{dy}{dt}, \dot{\theta} = \frac{d \theta}{ds}, \ddot{\theta} = \frac{d^2 \theta}{ds^2}, \dot{t} = \frac{dt}{ds}, \ddot{t} = \frac{d^2 t}{ds^2}

[/tex]

I have to show that the following quantities are independent of [itex]s[/itex]:

[tex]\dot{t}^2 + y^2 \dot{\theta}^2 = E[/tex]

[tex]y^2 \dot{\theta} = A[/tex]

2. Relevant equations

All that I can think may be of relevance that isn't already listed is that for a unit speed curve, [tex]y'^2 + x'^2 = 1[/tex]. Not sure that this matters here, though.

3. The attempt at a solution

I've tried rearranging the equations to try to resemble the desired equations, but it's been pretty unfruitful. I was thinking about maybe differentiating one of the equations w.r.t. [itex]s[/itex], but I'm not sure how one would deal with the third derivative of [itex]t[/itex] or [itex]\theta[/itex].

Any help (or hints) are is appreciated! Thanks!

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Geodesic equations

**Physics Forums | Science Articles, Homework Help, Discussion**