Given the following graph, state the intervals concave down

angela107
Messages
35
Reaction score
2
Homework Statement
Is this answer correct?
Relevant Equations
n/a
Screen Shot 2020-05-28 at 12.47.36 PM.png
Screen Shot 2020-05-28 at 1.00.15 PM.png
 
Physics news on Phys.org
I think is correct. The second derivative in ##x>0## equals ##0## and in ##-6<x<-2## the function is concave up.
## x=-2 ## would be the point of inflection.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top