Hi TheSerpent,
The formula for escape velocity is v=√(2GM/r) where v= velocity, G=universal gravitational constant (G=6.67*10-11 Nm2kg-2), M is the mass of the body, and r is the separation distance.
v=√(2GM/r)
Ekinetic=0.5mv2
m (rocket)=1000 kg
r (orbit)=13620 km <--- That's its altitude, not its orbital radius
Ekinetic=9.97165*1010 J <--- That's the energy added, not the total
m (earth)=5.98*1024 kg
r (earth)=6380 km
First, find the velocity that the rocket has...
Ekinetic=0.5mv2
9.97165*1010 J = 0.5(1000 kg)v2
v=√((2*(9.97165*1010 J))/1000 kg)
v=1.412*104 m/s
Then, find the velocity that the rocket would need to escape...
v=√(2GM/r)
v=√(2GM/rorbit+rearth)
v=√((2*(6.67*10-11 Nm2kg-2)*(5.98*1024 kg))/(13620 km + 6380 km))
v=1.997*105 m/s
Compare the two -- the rocket will not have sufficient velocity to escape.
Good luck! I hope this helps.