ohmymymymygod
- 2
- 0
Using tensors, I'm supposed to find the usual formula for the gradient in the covariant basis and in polar coordinates. The formula is \vec{grad}=[\frac{\partial}{\partial r}]\vec{e_{r}}+\frac{1}{r}[\frac{\partial}{\partial \vartheta}]\vec{e_{\vartheta}} where \vec{e_{r}} and \vec{e_{\vartheta}} are the covariant basis vectors.
In the contravariant basis with \vec{e^{r}} and \vec{e^{\vartheta}} , we know that \vec{grad}=[\frac{\partial}{\partial x^{i}}] \vec{e^{i}}. But from index gymnastics, \vec{e^{i}}=g^{ij}\vec{e_{j}}. So \vec{grad}=[\frac{\partial}{\partial x^{i}}]g^{ij}\vec{e_{j}}.
In polar coordinates, the inverse metric tensor is g^{11} = 1, g^{12}=g^{21}=0, g^{22} = \frac{1}{r^{2}}.
So this gives \vec{grad}=[\frac{\partial}{\partial r}]\vec{e_{r}}+\frac{1}{r^{2}}[\frac{ \partial}{\partial \vartheta}]\vec{e_{\vartheta}}. And lo and behold, this is wrong.
In the contravariant basis with \vec{e^{r}} and \vec{e^{\vartheta}} , we know that \vec{grad}=[\frac{\partial}{\partial x^{i}}] \vec{e^{i}}. But from index gymnastics, \vec{e^{i}}=g^{ij}\vec{e_{j}}. So \vec{grad}=[\frac{\partial}{\partial x^{i}}]g^{ij}\vec{e_{j}}.
In polar coordinates, the inverse metric tensor is g^{11} = 1, g^{12}=g^{21}=0, g^{22} = \frac{1}{r^{2}}.
So this gives \vec{grad}=[\frac{\partial}{\partial r}]\vec{e_{r}}+\frac{1}{r^{2}}[\frac{ \partial}{\partial \vartheta}]\vec{e_{\vartheta}}. And lo and behold, this is wrong.