Graphing the Potential Impact Parameter

Airsteve0
Messages
80
Reaction score
0

Homework Statement


In class we derived the Schwarzschild interior solution (constant
density). Examine the behaviour of non-radial null geodesics in this
spacetime.

Homework Equations



\Phi(r)=ln\left(\frac{3\sqrt{1-\frac{2M}{R}}}{2}-\frac{\sqrt{1-\frac{2Mr^2}{R^3}}}{2}\right)

B(r)=re^{-\Phi}=\frac{2xR}{3\sqrt{1-\frac{2M}{R}}-\sqrt{1-\frac{2Mr^2}{R^3}}}

The Attempt at a Solution


I have talked to my professor and what he is looking for is a plot of the potential impact parameter "B" as a function of "r/R". In order to do this I made the substitutions shown below and simplified the equation; however, I am left with an annoying 'R' in the top of the fraction. I'm not sure if my substitution is incorrect or I'm not noticing a way to get rid of it. Thanks for any help!

(1) R=\alpha M

(2) r=Rx where 'x' is what I will plot as the horizontal axis

(3)B=\frac{2xR}{3\sqrt{1-\frac{2}{\alpha}}-\sqrt{1-\frac{2x^2}{\alpha}}}
 
Last edited:
Physics news on Phys.org
Just plot B/R vs r/R. I'm assuming that R is a constant?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top