Gravitational flux and divergence theorem

AI Thread Summary
The discussion revolves around understanding gravitational flux density in the context of Gauss' divergence theorem. The user compares gravitational fields to fluid and particle flows, noting that while volumetric flux density and particle intensity have clear physical interpretations, gravitational flux density does not seem to indicate a tangible "flow." It is clarified that gravitational flux relates to the intensity of the field generated by mass distributions rather than a physical substance flowing. The key takeaway is that the flux of a gravitational field represents the amount of field intensity produced by mass within a volume, emphasizing the abstract nature of fields in physics. Ultimately, the user concludes that it may be best to move away from fluid analogies and focus on the formal mathematical descriptions.
checksix
Messages
15
Reaction score
6
Hi. I've been reading PF for quite a while and have decided to ask my first question. Please be gentle. (I'm a retired computer programmer, not a student)...

I've been learning Gauss' divergence theorem and I understand what "flux density" is when considering things like fluid transport or particle streams but I'm having trouble understanding what it means when talking about gravitational fields. I wonder if somebody can straighten me out.

Here's what I know:

For water flowing in a pipe, for example, the field under consideration would be called "volumetric flux density" and would have units of, say, liters per second per square meter. The "thing" that's flowing would be "water molecules".

For particles emitted by a radiation source, for example, the field under consideration would be called "particle intensity" and would have units of, say, particles per second per square meter. The "thing" that's flowing would be "particles".

Now here's where I have trouble:

For gravity the field would be called "gravitational field strength" or "gravitational flux density" and would have units of Newtons per kilogram. But this looks completely different from the water and particle cases: there are no units indicating "something flowing per unit time per unit area".

I could play with the units to make it look like the water and particle cases:

N / kg = (kg m / s^2) / kg = m / s^2 = (m^3 / s) / s / m^2

So now I have something that looks like a "flux density" - I have "something" per second per unit area.

But what is this "something" that is "flowing" ? It has units of (m^3 / s) which is a volumetric flow. Does this "something" have a name? Thanks for reading this far. Hope someone can enlighten me.
 
Physics news on Phys.org
The gravitational (more correctly gravitostatic) case and the electrostatic case have the same description, because essentially the laws that govern them are the same.

The flux of the gravitational intensity doesn't have a <material> description, because it uses the classical concept of <field> rather than particles/substances. The concept of field is a rather abstract one and could be used to account for the description of interactions between particles (ideally point-particles).

So the flux of a gravitostatic field is nothing but the <amount> of field intensity generated by a mass distribution inside a volume V.

The fundamental equation states that the flux of the gravitational field generated by a mass distribution inside a volume V is equal to the mass generating the field.

\oint\oint_{\Sigma} \vec{\Gamma}\left(\vec{r}\right) \cdot d\vec{\sigma} = m_{V_{\Sigma}}
 
Last edited:
Thanks, that helped. So I guess, in a sense, it is the field itself that is "flowing". Or maybe not. Perhaps it's best not to press too hard on the fluid analogy and just trust the formalism.
 
This is from Griffiths' Electrodynamics, 3rd edition, page 352. I am trying to calculate the divergence of the Maxwell stress tensor. The tensor is given as ##T_{ij} =\epsilon_0 (E_iE_j-\frac 1 2 \delta_{ij} E^2)+\frac 1 {\mu_0}(B_iB_j-\frac 1 2 \delta_{ij} B^2)##. To make things easier, I just want to focus on the part with the electrical field, i.e. I want to find the divergence of ##E_{ij}=E_iE_j-\frac 1 2 \delta_{ij}E^2##. In matrix form, this tensor should look like this...
Thread 'Applying the Gauss (1835) formula for force between 2 parallel DC currents'
Please can anyone either:- (1) point me to a derivation of the perpendicular force (Fy) between two very long parallel wires carrying steady currents utilising the formula of Gauss for the force F along the line r between 2 charges? Or alternatively (2) point out where I have gone wrong in my method? I am having problems with calculating the direction and magnitude of the force as expected from modern (Biot-Savart-Maxwell-Lorentz) formula. Here is my method and results so far:- This...
Back
Top