mathman44
- 204
- 0
Homework Statement
Use GT to find the area of one petal of the 8-leafed rose given by
r=17sin(\theta)
Recall that the area of a region D enclosed by a curve C can be found by
A=1/2\int(xdy - ydx)
I calculated it using the parametrization
x=rcos(\theta), y=rcos(\theta)
And I found a really long integral, evaluated it from 0 to pi/4, and got the correct answer.
Here is my question: apparently, if x is defined as above, and I find
dx = -rsin(\theta), dy = rcos(\theta), then the integral
A=1/2\int(xdy - ydx) simplifies nicely to 1/2\int(r^2)d\theta. Evaluating this integral again from 0 to pi/4 gives the correct answer.
So... why is it that I can pretend "r" is a constant when I'm evalutating dx and dy, when really, r is dependent on theta just as the x and y parametrizations are?