Vitor Pimenta
- 10
- 1
Homework Statement
A particle of mass m moves in a "central potential" , V(r), where r denotes the radial displacement of the particle from a fixed origin.
From Hamilton´s equations, obtain a "one-dimensional" equation for {\dot p_r}, in the form {{\dot p}_r} = - \frac{\partial }{{\partial r}}\left[ {{V_{eff}}\left( r \right)} \right], where {V_{eff}}\left( r \right) denotes an "effective" potential that is a funcion of r only.
Homework Equations
Hamiltonian: H = \frac{{{p_r}^2}}{{2m}} + \frac{{{L^2}}}{{2m{r^2}}} + V\left( r \right) , where L is the angular momentum with respect to the origin, which is a constant of the motion.
\frac{{\partial H}}{{\partial r}} = - {\dot p_r}
The Attempt at a Solution
\begin{array}{l}<br /> {{\dot p}_r} = - \frac{{\partial H}}{{\partial r}} = - \frac{\partial }{{\partial r}}\left[ {\frac{{{L^2}}}{{2m{r^2}}} + V\left( r \right)} \right]\\<br /> \therefore {V_{eff}}\left( r \right) = \frac{{{L^2}}}{{2m{r^2}}} + V\left( r \right)<br /> \end{array}
The problem is that it doesn´t make sense to me that the effective potential is different than the normal one ( V(r) ). Besides, the force acting on the particle shouldn´t have a dependence on its angular momentum L.