Hamiltonian Function thru new Variables Q,P -- Show that Q is cyclic

AI Thread Summary
The discussion centers on deriving the Hamiltonian function using new variables Q and P for a particle in a gravitational field. The user successfully determined the constant A as -1/2m^2g but struggles to express the Hamiltonian without the variable Q. Participants suggest that the user can eliminate Q by correctly formulating the Hamiltonian in terms of P and Q. A sign error in the user's calculation is pointed out, indicating the need for correction. The conversation emphasizes the importance of accurately expressing the Hamiltonian to achieve the desired cyclic nature of Q.
ardaoymakas
Messages
3
Reaction score
0
Homework Statement
3b) Print out the Hamilton function using the new variables Q and P. Show that by choosing the appropriate constant A, the variable Q becomes cyclic and therefore the Hamilton function can be written down without Q.
Relevant Equations
H = (p^2/2m) + mgq
q = P - AQ^2 , p = - Q
I took the derviative of the Hamiltonian function with respect to Q and assumed that it was equal to 0 in order to find the Konstant A. I did find the Konstant A as -1/2m^2g but I still cant write the Hamiltonian equation without having the Q as a variable. Can someone please help?

Translation:
The Hamilton function for a particle moving vertically in a homogeneous gravitational field with gravitational constant g is given by
----
We introduced new variables Q and P. The variables q and p can be expressed by Q and P using the following transformation formulas:
-----
a)Evaluate the Poisson bracket {Q ,P}q,p. Is the transformation canonical?

b)Print out the Hamilton function through the new variables Q and P. Show that by choosing a suitable constant A, the variable Q becomes cyclic and therefore the Hamilton function can be written down without Q.
Screenshot 2024-01-18 at 23.57.59.png
 
Last edited:
Physics news on Phys.org
Welcome to PF!
But posting attachments as pdf that have to be downloaded will hurt your response rate, particularly from those using iPads etc. Can you imbed the image?
 
haruspex said:
Welcome to PF!
But posting attachments as pdf that have to be downloaded will hurt your response rate, particularly from those using iPads etc. Can you imbed the image?
Hey,
Thanks! Is this better?
 
Much better, thanks.
ardaoymakas said:
I did find the Konstant A as -1/2m^2g but I still cant write the Hamiltonian equation without having the Q as a variable.
I've never worked with Hamiltonians, so not usually able to answer such a question, but it seems to me it is trivial to find the A which eliminates Q (and yes, it is the A you found). Just write out H in terms of P and Q. What does the Q term look like?

Edit: I see you have a sign error.
 
haruspex said:
Much better, thanks.

I've never worked with Hamiltonians, so not usually able to answer such a question, but it seems to me it is trivial to find the A which eliminates Q (and yes, it is the A you found). Just write out H in terms of P and Q. What does the Q term look like?

Edit: I see you have a sign error.
When I write it in terms of Q I get H = (-Q)^2 / 2m) + mgP + (Q^2)/2m which isnt the formula without Q
 
ardaoymakas said:
When I write it in terms of Q I get H = (-Q)^2 / 2m) + mgP + (Q^2)/2m which isnt the formula without Q
Did you note my edit? It says your expression for A has the wrong sign.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top