Harmonic oscillator coherent state wavefunction

quantum539
Messages
2
Reaction score
0
Hi, I am trying to find the wavefunction of a coherent state of the harmonic oscillator ( potential mw2x2/2 ) with eigenvalue of the lowering operator: b.

I know you can do this is many ways, but I cannot figure out why this particular method does not work.

It can be shown (and you can find this easily on the internet) that the eigenvalue b evolves as:

b(t)=b0e-iwtWhat I did was find the coherent state wavefunction u(x,t) by using the eigenfunction equation with the lowering operator a:

a[u(x,t)]=b*u(x,t)

with a=(mwx+(h-bar)*d/dx)/sqrt(2mw(h-bar))

that gives

u(x,t)=const*e-(1/l2)*(x-l*b)2

where l=sqrt(2(h-bar)/mw)
now, when I put in the time evolution of b I get:

u(x,t)=const*e-(1/l2)*(x-lb0e-iwt)2

(I plugged in b(t) from before in for b)
This state does not satisfy the schodinger equation, for one thing it cannot be normalized because the integral over all x of the norm squared of the wavefunction varies in time.

This confuses me because b(t) comes from treating the coherent state as a superposition of harmonic oscillator energy eigenstates, which come from the schrodinger equation. Since the schrodinger equation conserves the integral over all x of probability density, why do I get a state which does not do so from harmonic oscilator states (and thus, by extension, the schrodinger equation)?

Thanks so much in advance, I have done this over several times over the last day and cannot find out anything I did wrong nor a solution online.
 
Last edited:
Physics news on Phys.org
Thanks,

But I was wondering if someone knows why the method I described does not work.
 
quantum539 said:
Thanks,

But I was wondering if someone knows why the method I described does not work.

You said in your original post:

quantum539 said:
It can be shown (and you can find this easily on the internet) that the eigenvalue b evolves as:
b(t)=b_0e^{-iwt}

Could you give a URL to where this is shown? It doesn't make sense to me.
 
This relation is true in the Heisenberg picture of time evolution, and one must not mix these pictures as in the original posting. I have a treatment of the problem in my QM lecture notes, but only in German, but there are many formulae; so perhaps it's possible to understand the calculations:

http://theory.gsi.de/~vanhees/faq/quant/node51.html
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top