relinquished™
- 79
- 0
I'm real stuck with this problem of mine in The Calculus 7 by Leithold
<br /> \int arctan \sqrt{x} dx<br />
Since there is no elementary formula for integration of an inverse trigo function, we cannot manipulate the integrand in such a way as to integrate easily with one step of Integration by parts.(please verify)
So first, If we let u = arctan \sqrt{x} and
dv = dx
then
du = \frac{dx}{2 \sqrt{x} (x+1)} and
v=x
then we have
<br /> \int arctan \sqrt{x} dx = xarctan \sqrt{x} - \int \frac{xdx}{2 \sqrt{x} (x+1)}<br />
Now, Case 1, without simplifying \frac{x}{\sqrt {x}}
let db = \frac{1}{2 \sqrt{x} (x+1)}dx
and a = x.
Then da = dx
and b = arctan \sqrt{x}
so
<br /> \int arctan \sqrt{x} dx = xarctan \sqrt{x} - xarctan \sqrt{x} + \int arctan \sqrt{x} dx
which of course will lead us nowhere but 0=0
Now, Case 2 - If we simplify \frac{x}{\sqrt {x}} = \sqrt{x}
let a= \sqrt{x} and db = \frac{dx}{1+x},
then da = \frac{dx}{2 \sqrt{x}} and b = ln (x+1)
so
<br /> \int arctan \sqrt{x} dx = xarctan \sqrt{x} - \frac{1}{2} ( \sqrt{x}ln (x+1) - \int \frac{ln |1+x| dx}{2 \sqrt{x}})
and if we do Integration by parts again, we will just get an infinite sequence of \sqrt{x}ln (x+1) (please verify)
I'm really open to suggestions ^_^`
<br /> \int arctan \sqrt{x} dx<br />
Since there is no elementary formula for integration of an inverse trigo function, we cannot manipulate the integrand in such a way as to integrate easily with one step of Integration by parts.(please verify)
So first, If we let u = arctan \sqrt{x} and
dv = dx
then
du = \frac{dx}{2 \sqrt{x} (x+1)} and
v=x
then we have
<br /> \int arctan \sqrt{x} dx = xarctan \sqrt{x} - \int \frac{xdx}{2 \sqrt{x} (x+1)}<br />
Now, Case 1, without simplifying \frac{x}{\sqrt {x}}
let db = \frac{1}{2 \sqrt{x} (x+1)}dx
and a = x.
Then da = dx
and b = arctan \sqrt{x}
so
<br /> \int arctan \sqrt{x} dx = xarctan \sqrt{x} - xarctan \sqrt{x} + \int arctan \sqrt{x} dx
which of course will lead us nowhere but 0=0
Now, Case 2 - If we simplify \frac{x}{\sqrt {x}} = \sqrt{x}
let a= \sqrt{x} and db = \frac{dx}{1+x},
then da = \frac{dx}{2 \sqrt{x}} and b = ln (x+1)
so
<br /> \int arctan \sqrt{x} dx = xarctan \sqrt{x} - \frac{1}{2} ( \sqrt{x}ln (x+1) - \int \frac{ln |1+x| dx}{2 \sqrt{x}})
and if we do Integration by parts again, we will just get an infinite sequence of \sqrt{x}ln (x+1) (please verify)
I'm really open to suggestions ^_^`