What is the molar heat capacity of an ideal gas at constant pressure and volume?

AI Thread Summary
The discussion revolves around calculating the molar heat capacities of an ideal gas at constant pressure (C_p,m) and constant volume (C_v,m) after supplying 117 J of heat to 2.00 moles of gas, resulting in a temperature increase of 2.00 K. The calculated C_p,m is 29.25 J/K mole, leading to the conclusion that C_v,m is 2.52 R. Participants discuss the characteristics of monatomic versus diatomic gases, noting that for a monatomic gas, C_p should equal 5/2 R. The conversation emphasizes the importance of using consistent formulas for specific and total heat capacities to determine the gas type accurately, ultimately suggesting that the gas is likely monatomic based on the derived values.
Banyans
Messages
3
Reaction score
0

Homework Statement



117 J of energy is supplied as heat to 2.00 moles of an ideal gas at constant
pressure, the temperature rises by 2.00 K. Calculate the molar heat capacity at
constant pressure C_p,m and the molar heat capacity at constant volume C_v,m
for the gas. Is the gas monatomic or diatomic?

Homework Equations


PV = nRT
ΔQ = n Cp ΔT

The Attempt at a Solution


ΔQ = 117 J
n = 2 moles
ΔT = 2 K

ΔQ = n Cp ΔT = n αR ΔT
Cp = ΔQ/ (nΔT) = 29.25 J/K mole
Cp/R = 3.52

For ideal gases equation of state is
PV = nRT,
and work performed by the gas in isobaric process is
dA = PdV = nRdT,
which means Cv = Cp - R = 2.52 R.

But I have no idea how to relate this information to work out if its diatomic or monatomic.
 
Physics news on Phys.org
What is Cp for an ideal monoatomic gas?
 
Hello Banyans, :welcome:

Hard to give a hint here without spoiling the exercise. Don't the values of ##{7\over 2}## and ##{5\over 2}## ring a bell ? What would they be for an ideal monatomic gas ?
 
mfb said:
What is Cp for an ideal monoatomic gas?
5/2R?
 
So would I proceed in the following way?

Cp=29.25

Cp=Cv+nR
29.25=Cv+2(8.31451)

so

Cv=12.621

So there fore its a monoatomic gas? since Cv=3/2R?
 
Banyans said:
5/2R?
That is Cp for a monoatomic gas, right. Does that match the result you got for the unknown gas?
Banyans said:
Cp=Cv+nR
That formula is not right. Use specific heat capacities or use total heat capacities, but do so in a consistent way.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top