Heat equation and maximum principle

jolubaes
Messages
1
Reaction score
0

Homework Statement


Suppose that u(x,t) satisfies the heat equation u_{t}=u_{x x} for 0<x<L and t>0 with initial condition u(x,0)=θ(x) and boundary conditions u(0,t)=u(L,t)=0. Suppose that θ(x)>0 for 0<x<L. Explain why u(x,t)>0 for all 0<x<L and t>0

Homework Equations


Strong Maximum principle: For nonconstant solutions to the heat equation, the maximum value of u(x,t) in the rectangle 0≤x≤L, 0≤t≤∞ can only occur for either x=0, x=L or t=0

Note: u_{x x} means doble partial derivative with respect x

The Attempt at a Solution


The maximum principle is telling us that the max value of u(x,t) should be in θ(x). Let's call the maxium value u_{max}. In this point the concavity should be negative, thus umax _{x x} < 0, and from the heat equation umax_{t} <0 telling us that the value of u will decrease in time ... but I just don't see why this can't go lower than zero... any help?
 
Physics news on Phys.org
If there's a "Strong Maximum Principle" shouldn't there also be a "Strong Minimum Principle"? Think about negating your boundary conditions and changing u(x,t) to -u(x,t).
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top