Heat exchange in a thermal storage based on phase change materials

Click For Summary

Discussion Overview

The discussion focuses on modeling a thermal battery utilizing phase change materials (PCM) within a plate heat exchanger. Participants explore the equations governing heat transfer, particularly under specific assumptions regarding the behavior of PCM and the heat transfer fluid.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant outlines a set of assumptions for the model, including neglecting natural convection and considering isothermal phase changes.
  • Another participant questions the treatment of enthalpy in the model, suggesting a specific behavior for enthalpy based on temperature conditions and the presence of solid and liquid phases.
  • A participant acknowledges the correctness of the enthalpy treatment but expresses confusion regarding the integration approach and the need for adjustments in the equations.
  • Concerns are raised about the sign in equation (4), suggesting a potential error due to the flow direction of the heat transfer fluids.
  • There is a suggestion to integrate equations in terms of enthalpy rather than temperature for simplification.

Areas of Agreement / Disagreement

Participants generally agree on the assumptions and the need for specific enthalpy equations, but there is disagreement regarding the treatment of certain equations and the integration approach. The discussion remains unresolved with multiple viewpoints on the equations presented.

Contextual Notes

Limitations include assumptions about the behavior of PCM and the neglect of certain terms in the equations, which may affect the accuracy of the model. The discussion also highlights potential errors in the formulation of equations based on flow direction.

DianeLR
Messages
7
Reaction score
0
Hello,

I want to model a thermal battery based on phase change materials (PCM). It is a plate heat exchanger immersed in a PCM bath. The diagram is given in the attached file.
I want to determine the temperature at each moment and from everywhere in the battery. The hypotheses are the following:

- Natural convection neglected (pure conduction),
- No supercooling or superheating,
- incompressible and Newtonian heat transfer fluid,
- Kinetic and potential energy variations are neglected,
- Homogeneous, isotropic and pure body PCM,
- Isothermal phase change,
- Density variation of PCM during the change of state neglected,
- Thermophysical properties independent of temperature (and different for liquid and solid phases).

These assumptions allowed me to obtain the equations visible in the attached file. The MCP parts are modeled in 2D (in x and y) while the heat transfer fluids in 1D (in y).
Do the equations seem correct to you?
Thank you for your answers
?hash=116c30bbcee205fb470bfd76f0258e04.png
 

Attachments

  • PCM_storage_eqs_V2.png
    PCM_storage_eqs_V2.png
    23.2 KB · Views: 145
Science news on Phys.org
I kind of see what you are solving here, but part of it confuses me.

The are two regions of PCM, 1 and 2. Region 1 is next to the hot side of the heat exchanger and 2 is next to the cold side. Both regions can have solid (at temperatures below the melting point), liquid at temperatures above the melting point, or a combination of solid and liquid (liquid fraction f) at the melting point. Correct so far?

I have a problem with Eqn. 10. The enthalpy per unit mass behavior should be as follows:

##h=c_s(T-T_{M})## for ##T<T_M##

##h=Lf## for ##T=T_M##

##h=L+c_l(T-T_M)## for ##T>T_M##

Are you assuming that solid and liquid can exist together at temperatures other than the melting point?

In Eqns. 3 and 4, the final terms on the RHS (axial conduction terms) are negligible except for liquid metals.
 
It's correct what you said.
For the enthalpie, I used that equation to determine the equation inside the PCM (see picture)

And thanks for the equations (3) and (4). It will be easier to solve with one less term
 

Attachments

  • Annotation 2023-02-06 092121.png
    Annotation 2023-02-06 092121.png
    10.3 KB · Views: 162
I think I am making a mistake with equation (4). The hot heat transfer fluid is against the flow of the cold. Shouldn't there be a minus sign before $$m c_p$$ (on the left of the equality)?
 
DianeLR said:
For the enthalpie, I used that equation to determine the equation inside the PCM (see picture)
It doesn't look the same as what I gave. It might be easier to integrate 9 and 10 in terms of enthalpy than in terms of temperature.
DianeLR said:
I think I am making a mistake with equation (4). The hot heat transfer fluid is against the flow of the cold. Shouldn't there be a minus sign before $$m c_p$$ (on the left of the equality)?
Yes
 
Thank you for your response. I will check for the integration in terms of enthalpy.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
6
Views
992
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
5K
  • · Replies 1 ·
Replies
1
Views
13K
Replies
454
Views
29K