Modelling of two phase flow in packed bed using conservation equations

Click For Summary

Discussion Overview

The discussion revolves around the modeling of two-phase flow in a packed bed using conservation equations, specifically focusing on the derivation of mass, momentum, and energy equations that account for phase changes in the fluid. Participants explore the complexities involved in simulating this system, including the need to track temperature and phase fronts over time.

Discussion Character

  • Exploratory
  • Technical explanation
  • Conceptual clarification
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant seeks to derive mass, momentum, and energy equations for two-phase flow, noting that existing equations for single-phase flow are insufficient.
  • Another participant suggests starting with simpler models to understand the system before increasing complexity, emphasizing the importance of preliminary calculations.
  • Participants discuss the need to consider system parameters such as diameter, packing type, void fraction, and flow direction in the modeling process.
  • There is a proposal to model isothermal behavior under different conditions (all liquid vs. all gas) to understand residence time and pressure variations.
  • One participant acknowledges the need to account for pressure drop and residence time in their models, questioning how to calculate these factors effectively.
  • Discussion includes the concept of lumped parameter models, with questions about how temperature and other properties behave under high axial dispersion conditions.
  • Participants express intentions to formulate simplified models and share their approaches to the conservation equations.

Areas of Agreement / Disagreement

Participants generally agree on the need to start with simpler models before tackling the complexities of two-phase flow. However, there are multiple competing views on the best approach to modeling and the specific parameters to consider, leaving the discussion unresolved.

Contextual Notes

Participants mention various assumptions and conditions, such as the static nature of the packed bed and the potential significance of pressure drop, which may affect the modeling outcomes. The discussion also highlights the need for further exploration of lumped parameter models and their implications.

Who May Find This Useful

This discussion may be useful for researchers and practitioners interested in fluid dynamics, thermal management in packed beds, and the modeling of phase changes in porous media.

  • #451
casualguitar said:
Hi Chet, is the claim that the numerical dispersion from the upwind scheme is exactly the same as the physical dispersion in the central differencing scheme, or is the claim only that they are of the same order of magnitude?
To terms of 2nd order accuracy, they are the same when ##\Delta x## and l are related in the way we have identified.
 
Engineering news on Phys.org
  • #452
Chestermiller said:
To terms of 2nd order accuracy, they are the same when ##\Delta x## and l are related in the way we have identified.
Thanks Chet. Have I identified this relationship correctly in my post #450 above?
 
  • #453
Hi Chet, my apologies please ignore the above as its not correct. I will revert later this morning on this
 
  • #454
Hi Chet, am I correct in saying -
"If the truncation error on the advection term in the upwind scheme is the same as the dispersion term in the central differencing scheme (when l = delta x/2), then the numerical dispersion associated with the upwind scheme will be equal to the physical dispersion in the central differencing scheme"

I'm having a bit of trouble proving that they are the same mathematically. Working on it though. Just checking that I have the right idea.

Heres what I've attempted so far:

Central Differencing Scheme (CDS) Dispersion Term:
\begin{equation*}
l \frac{\phi_{x+\Delta x/2} (h_{x+\Delta x} - h_x) - \phi_{x-\Delta x/2} (h_x - h_{x-\Delta x})}{\Delta x^2}
\end{equation*}

Upwind Scheme (US) Advection Term:
\begin{equation*}
\frac{\phi_{x-\Delta x/2} h_{x-\Delta x} - \phi_{x+\Delta x/2} h_x}{\Delta x}
\end{equation*}

To determine the truncation error for the advection term in the Upwind Scheme, we can use the Taylor Series expansion around x:

Expanding (h_{x-\Delta x}) using the Taylor series:
\begin{equation*}
h_{x-\Delta x} = h_x - \Delta x \frac{\partial h}{\partial x} + \frac{\Delta x^2}{2} \frac{\partial^2 h}{\partial x^2} - \dots
\end{equation*}

Substituting this into the US advection term and simplifying I think should give the truncation error term:
\begin{equation*}
\frac{\Delta x}{2} \frac{\partial^2 h}{\partial x^2}
\end{equation*}

However I havent been able to get this yet. If I did, then I'd equate this truncation error with the dispersion term in CDS when (##l = \frac{\Delta x}{2}##).

With (##l = \frac{\Delta x}{2}##), the dispersion term in CDS becomes:
\begin{equation*}
\frac{\Delta x}{2} \frac{\partial^2 h}{\partial x^2}
\end{equation*}

This term is the same as the truncation error from the US. This indicates that when ##(l = \frac{\Delta x}{2})##, the truncation error in the upwind scheme is equivalent to the physical dispersion modeled by the CDS.

Is this the right track?
 
  • #455
casualguitar said:
Hi Chet, am I correct in saying -
"If the truncation error on the advection term in the upwind scheme is the same as the dispersion term in the central differencing scheme (when l = delta x/2), then the numerical dispersion associated with the upwind scheme will be equal to the physical dispersion in the central differencing scheme"

I'm having a bit of trouble proving that they are the same mathematically. Working on it though. Just checking that I have the right idea.

Heres what I've attempted so far:

Central Differencing Scheme (CDS) Dispersion Term:
\begin{equation*}
l \frac{\phi_{x+\Delta x/2} (h_{x+\Delta x} - h_x) - \phi_{x-\Delta x/2} (h_x - h_{x-\Delta x})}{\Delta x^2}
\end{equation*}

Upwind Scheme (US) Advection Term:
\begin{equation*}
\frac{\phi_{x-\Delta x/2} h_{x-\Delta x} - \phi_{x+\Delta x/2} h_x}{\Delta x}
\end{equation*}

To determine the truncation error for the advection term in the Upwind Scheme, we can use the Taylor Series expansion around x:

Expanding (h_{x-\Delta x}) using the Taylor series:
\begin{equation*}
h_{x-\Delta x} = h_x - \Delta x \frac{\partial h}{\partial x} + \frac{\Delta x^2}{2} \frac{\partial^2 h}{\partial x^2} - \dots
\end{equation*}

Substituting this into the US advection term and simplifying I think should give the truncation error term:
\begin{equation*}
\frac{\Delta x}{2} \frac{\partial^2 h}{\partial x^2}
\end{equation*}

However I havent been able to get this yet. If I did, then I'd equate this truncation error with the dispersion term in CDS when (##l = \frac{\Delta x}{2}##).

With (##l = \frac{\Delta x}{2}##), the dispersion term in CDS becomes:
\begin{equation*}
\frac{\Delta x}{2} \frac{\partial^2 h}{\partial x^2}
\end{equation*}

This term is the same as the truncation error from the US. This indicates that when ##(l = \frac{\Delta x}{2})##, the truncation error in the upwind scheme is equivalent to the physical dispersion modeled by the CDS.

Is this the right track?
I havent yet been able to work this out. Is this a dead end by any chance? I'm not 100% sure that it is the truncation error I should be considering. My apologies for all of the questions on this
 

Similar threads

  • · Replies 427 ·
15
Replies
427
Views
25K
  • · Replies 18 ·
Replies
18
Views
2K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 48 ·
2
Replies
48
Views
5K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 35 ·
2
Replies
35
Views
4K
  • · Replies 8 ·
Replies
8
Views
9K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 67 ·
3
Replies
67
Views
6K