1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Heat flux through a composite wall

  1. Nov 8, 2015 #1
    1. State the problem

    A plane wall consisting of three different materials, each of constant thermal conductivity k. Assume steady-state temperature distribution. 85yCxaC.jpg

    a) Comment on relative magnitudes of q(dot)''2 and q(dot)''3 and of q(dot)''3 and q(dot)''4.

    b) Comment on the relative magnitudes of kA and kB and of kB and kC.

    c) Sketch the heat flux as a function of x.

    2. Relevant equations

    q'' = -k dT/dX
    d2T/(dx)2 = 0 for A and B
    d2T/(dx)2 = -Qgen/k for c

    3. The attempt at a solution

    a)

    I will assume that q(dot)'' = q'' (not sure why they wrote q(dot)'', but in the graph it's just q''). Steady state and no heat generation in A and B means that q''2=q''3. In C, the parabola indicates that there's some heat generation occurring, thus q''3<q''4.

    b)

    Since q''2=q''3 ⇒ kA / kB = Δx12⋅ΔT23 / Δx23⋅ΔT12

    kB / kC = ???

    d)

    Horizontal line through A and B somewhere below the x-axis. Through C I'm not certain. It should be 0 at T4 and the highest at T3.
     
    Last edited: Nov 8, 2015
  2. jcsd
  3. Nov 8, 2015 #2

    BvU

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    Heat flux is a flow of heat. Hence the dot in ##\dot q##.
    If there is a steady state, there is a constant heat flux (otherwise the temperature would not be constant in time).
    Check in your textbook or here to understand the meaning of your relevant equation. The double quote is a derivative wrt x.
    Do try to be consistent in your notation ! Better ##\ {d^2T\over dx^2} \ ## than ##\ {d^2t\over dx^2} \ ##.
    Your expression is correct, though :smile: !

    which way is the heat flux ? So is it heat generation or does the wall give off heat ?
     
  4. Nov 8, 2015 #3
    Fixed the notation, thanks!

    So, q'' = dq/dx? I thought it was dq/dt.

    Heat flux is in the direction of the arrows. Not sure about your other question.
     
  5. Nov 8, 2015 #4
    Your conclusion about the flux line for A and B is correct. For C, it is a straight line, running from the A/B line at 3 to zero at 4.

    Chet
     
  6. Nov 8, 2015 #5
    Thanks, Chet!

    Does this mean that

    a) Heat flux in C can never be equal to heat flux in A or B.
    b) Heat flux in C is always greater than heat flux in B.

    Furthermore, shouldn't heat flux be the same in all three materials according to conservation of energy?
     
  7. Nov 9, 2015 #6
    Solved. You may close the thread.
     
  8. Nov 9, 2015 #7

    BvU

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    One of my colleagues has a signature "Don't tell us that you have found the solution; tell us the solution you have found" ! :rolleyes:
     
  9. Nov 9, 2015 #8
    Sorry, BvU. Didn't expect anyone to care about my solution.

    My solution for a) and c) below.

    The easy part: Temperature profile in A and B is linear, thus heat flux through A and B is the same.

    The harder part: Heat flux through C?

    According to the heat equation, for a steady state problem with internal heat generation:

    (q'' should be q(dot)'')

    $$
    \ {d^2T\over dx^2} \ = -{Q_g\over k}
    $$

    where $$ Q_g $$ is internal heat generation.

    Fourier's law

    $$
    \frac{-q''}{k} = \frac{dT}{dx}
    $$

    thus if we use that in our heat equation

    $$
    \frac{d}{dx}[q''(x)] = Q_g
    $$

    Ergo, heat flux through C

    $$
    q''(x) = Q_g\cdot x + c
    $$

    This is a first degree polynomial. This confirms what Chet wrote earlier. If we picture the graph (horizontal line from 1-3 below the axis, and then a diagonal line to y=0 from 3-4), we see that the magnitude of heat flux in B is always gte than the magnitude of heat flux C.
     
  10. Nov 9, 2015 #9

    BvU

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    Thanks for posting !
    I think I get it. The parabola in C confused me (not an expert, just interested and curious). So this C is some kind of wall heating device and then the rest follows. Most of the heat generated should flow to the right if all is well.
     
  11. Nov 9, 2015 #10
    Actually, all the heat generated in C flows to the left. The very right boundary of C is insulated (zero heat flux).

    Chet
     
  12. Nov 9, 2015 #11

    BvU

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    hence the ##{dT\over dx} = 0 ##, I take it ?
     
  13. Nov 9, 2015 #12
    Yes. You can see that in the figure.

    Chet
     
  14. Nov 9, 2015 #13
    Exactly, BvU!

    Here's a derivation of the heat diffusion equation:
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Heat flux through a composite wall
Loading...