Help calculating the uncertainty in the Sun's rotational speed

AI Thread Summary
The discussion centers on calculating the uncertainty in the Sun's rotational speed using given parameters and latitudes derived from sunspot photos. The user expresses difficulty in obtaining consistent error calculations, with results showing larger discrepancies than expected, particularly at lower latitudes. A key point raised is that as latitude decreases, the uncertainty in measurements increases, yet the final results show reduced uncertainty. Clarification is provided that the sine function's behavior at low latitudes contributes to this phenomenon. The conversation emphasizes the importance of clear communication and methodical error analysis in scientific calculations.
koots
Messages
3
Reaction score
0
Homework Statement
Help calculating uncertainty when the equation includes sin functions
Relevant Equations
omega = A + Bsin^2(phi) + Csin^4(phi)
Hi everyone,

The equation is one we have been given to calculate the rotational speed of the sun for different latitudes. phi = average latitude. This shouldn't be a problem for me, but for some reason I just can't trust my error calcs.

We are given :
A = 14.713 ± 0.0491◦/d B = −2.396 ± 0.188◦/d C = −1.787 ± 0.253◦/d
and the latitudes I'm using have been taken from sunspot photos with a stonyhurst grid overlaid. They are:
31, 15, 5.5, 1.5, all with an uncertainty +/- 2.

I've so far used trigonometric identites, calculus, even calculating min and max values and halving the difference etc. My problem is that I end up with errors larger, and for the lower latitudes far larger than the result from the equation. Every method gives a slightly different result and I just can't carry on comfortably.

Could anyone suggest which method they would use for the above equation?

Cheers
 
Physics news on Phys.org
koots said:
errors larger, and for the lower latitudes far larger than the result from the equation
I do not understand what you are saying there. Your wording implies the equation is for calculating an error, but you are calculating what should be the same error value by some other means and getting a much larger number.

It might help if you were to post details of an attempt (as forum rules require anyway) and show exactly what discrepancy you are seeing.

Remember, very few reading your post will have experience in this exact topic but many may be well able to assist if you explain clearly.
 
Thanks haruspex.

The equation is for calculating the rotational speed of the sun. We are not given a method of calculating the error in the result. I did write up an example on my lunchbreak at work to post here when I got home after realising there were rules, but I can't for the life of me find it now.

I've since found a silly mistake I made using the calculus method earlier of taking the partial derivatives multiplied by the change in the variable, squaring, adding, and taking the square root and now it works out much nicer but I'm still not entirely sold on it. A quick run through the method is attached.

The reason I'm not sold on it is because as my latitude decreases, the uncertainty in that measurement increases as all measurements were +/- 2 degrees, however in the final answers the uncertainty becomes less at lower latitude values.

Any thoughts?

Cheers
calculusuncertainty.jpg
 
Looks good to me.
The reason the errors in latitude matter less at low latitudes is that ##\sin(\phi)## becomes very small.
 
Thanks mate. Much appreciated. Makes perfect sense, I just had my guts telling me it was my fault..

Cheers
 
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top