Hello,(adsbygoogle = window.adsbygoogle || []).push({});

Could someone please help me to simplify my solution to my ODE?

Here is the solution I get when I check it using Maple 10,

http://img524.imageshack.us/img524/415/ode2hx.jpg [Broken]

Here are my steps:

[tex]

\left( {1 + x^3 } \right)\frac{{dy}}{{dx}} - 3x^2 y = 0

[/tex]

[tex]

\left( {1 + x^3 } \right)dy = 3x^2 ydx

[/tex]

[tex]

\int {\frac{1}{y}} dy = \int {\frac{{3x^2 }}{{1 + x^3 }}} dx

[/tex]

Let [tex]u = 1 + x^3 [/tex] then [tex]\frac{{du}}{3} = x^2 dx[/tex]

[tex]

\ln \left| y \right| = \frac{1}{3}\int {\frac{1}{u}} du

[/tex]

[tex]

\ln \left| y \right| = \frac{1}{3}\ln \left| u \right| + C

[/tex]

[tex]

\ln \left| y \right| = \frac{1}{3}\ln \left| {1 + x^3 } \right| + C

[/tex]

How do I simplify this down to match the answer in Maple 10?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Help solving ODE using separation of variables

**Physics Forums | Science Articles, Homework Help, Discussion**