Help Solving Two Proofs - Tan X + Cot X = (Sec X)(Csc X)

  • Thread starter Thread starter chase222
  • Start date Start date
  • Tags Tags
    Proofs
AI Thread Summary
The discussion focuses on solving two trigonometric proofs: tan x + cot x = (sec x)(csc x) and tan^2 x - sin^2 x = (tan^2 x)(sin^2 x). For the first proof, participants suggest rewriting the left side and combining terms, ultimately leading to the identity sin^2 x + cos^2 x = 1. In the second proof, the left side is factored and simplified, revealing a relationship that simplifies to cos^2 x = cos^2 x. The conversation emphasizes the importance of careful manipulation of terms in trigonometric identities. Overall, the participants are working towards a clearer understanding of these proofs using sine and cosine.
chase222
Messages
12
Reaction score
1
I need help solving 2 proofs:

tan x + cot x = (sec x)(csc x)

I changed the left side to:

tan x + 1/tan x = (sec x)(csc x)

then crossed out the tan:

1 = (sec x)(csc x), but I got stuck there.

The next one I had trouble with was:

tan^2 x - sin^2 x = (tan^2 x)(sin^2 x)

I saw the left side being a^2 - b^2, so I factored it into:

(tan x + sin x)(tan x - sin x) = (tan^2 x)(sin^2 x)

I then changed the tan into sin/cos:

((sin x/cos x) + sin x)) ((sin x/cos x) - sin x)) , but got stuck there.

Can you help me solve these proofs?
 
Physics news on Phys.org
Try to write everything in terms of sine & cosine...You'll get them easily.

Daniel.
 
So for the second one:

tan^2 x - sin^2 x = (tan^2 x)(sin^2 x)

(sin^2 x/cos^2 x) - sin^2 X = (sin^2 x/cos^2 x)(sin^2x)

So on both sides so the sin^2 x cancel, leaving it like:

cos^2 x = cos^2 x?

And for the first one:

tan x + cot x = (sec x)(csc x)

I changed it to:

sin x/cos x + 1/(sin x/cos x) = (1/cos x)(1/sin x)

What would I do from here?
 
Bring it to the same denominator (in the LHS) and after simplifying the denominators,u'll find

\sin^{2}x+\cos^{2}x =1



Daniel.
 
chase222 said:
I changed the left side to:

tan x + 1/tan x = (sec x)(csc x)

then crossed out the tan:

1 = (sec x)(csc x), but I got stuck there.

"crossed out the tan" is not a mathematics term! I'm serious- think about exactly what you are doing there. tan x+ 1/tan x is NOT equal to 1 for all x!

chase222 said:
(sin^2 x/cos^2 x) - sin^2 X = (sin^2 x/cos^2 x)(sin^2x)

So on both sides so the sin^2 x cancel, leaving it like:

cos^2 x = cos^2 x?

Okay, sin^2 x/cos^2 x) - sin^2 x= (sin^2 x)((1/cos^2x) - 1) so canceling sin^2 x leaves (1/cos^2 x)- 1 = sin^2 x/cos^2 x

That is NOT "cos^2 x= cos^2 x" but if you multiply both sides by cos^2 x you get something almost as easy.
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top