Help with Calculating Planet's Orbital Period

AI Thread Summary
A user seeks assistance in calculating the orbital period of a hypothetical small planet located eight times further from the Sun than Earth. The discussion revolves around applying Kepler's Third Law, which states that the square of the orbital period (T) is directly proportional to the cube of the semi-major axis (R) of its orbit. By substituting R = 8 AU into the formula T^2 ∝ R^3, the user derives that T^2 equals 512, leading to T being approximately 16√2 years. The calculation is confirmed as correct, concluding the discussion with a sense of accomplishment.
tinksy
Messages
5
Reaction score
0
hi, could someone please help me with this problem??

If a small planet were discovered with a distance from the sun eight times that of the Earth, what would you predict for its period in (Earth) years. (i.e. how many times longer would it take to go round the sun than the Earth does.)
 
Last edited:
Physics news on Phys.org
i will not give you the answer straight away, but here's the hint---
get orbital velocity v as a function of radius r

dynamics of the system(*) :

from Newton's second law and law of gravitation,
(m*v^2)/R = (G*M*m)/R^2


get v(r) and substitute in the kinemetical relation which you got correct,that is, T=2(pi)r/v

this will give you T(r) which is usually called "kepler's third law".


*assumption: all orbits are circular

justification : though the orbits that actually elliptical ,the eccentricity is very small.(dont worry if you don't understand this,take this as a side remark).

cheers :smile:
 
Last edited:
thanks teddy...

could u tell me if I'm right?

i've used kepler's law T^2 (directly proportional to) R^3
so if R = 8R (as for Earth, R = 1AU so for the planet, R = 8AU)
kepler's law: R^3/T^2 = 1
therefore, T^2 = 8^3/1
so T = (root)512 = 16(root)2 ...? is that correct?
 
yup,its right.
bye :smile:
 
yaaaaaay! thanks
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...

Similar threads

Back
Top