lets_resonate
- 15
- 0
Hello,
I'm reading a classical mechanics book. In it, they show a derivation of the centrifugal force equation:
\vec{ F_{\textrm{cf}}} = -m \vec{ \omega } \times \left( \vec{ \omega } \times \vec{ r } \right)
I understood the derivation up to that point. However, they have a couple additional steps after that whereby they derive another equation based on this one. It is valid if the axis of rotation is chosen to lie along the z-axis:
\vec{ F_{\textrm{cf}}} = m \| \vec{ \omega } \| ^ 2 \vec \rho
Here, \vec \rho is the "cylindrical-radius vector to the particle from the z-axis".
The derivation only shows a couple steps:
\vec{ F_{\textrm{cf}}} = -m \vec{ \omega } \times \left( \vec{ \omega } \times \vec{ r } \right)
\vec{ F_{\textrm{cf}}} = -m \left[ \vec{ \omega } \left( \vec{ \omega } \cdot \vec{ r } \right) - \vec{r} \omega^{2} \right]
\vec{ F_{\textrm{cf}}} = m \| \vec{ \omega } \| ^ 2 \left( x \mathbf{\hat{x}} + y \mathbf{\hat{y}} \right)
\vec{ F_{\textrm{cf}}} = m \| \vec{ \omega } \| ^ 2 \vec \rho
I'm confused about how they went from the first step to the second step. Can anyone please help?
Attempt at a solution
If the first two steps in the derivation are valid, it would imply this:
\vec{ \omega } \times \left( \vec{ \omega } \times \vec{ r } \right) = \vec{ \omega } \left( \vec{ \omega } \cdot \vec{ r } \right) - \vec{r} \| \vec \omega \|^{2}
So I decided to work with the left side of this equation and hope that it would yield the right side. I used this definition of the cross product:
\vec{ a } \times \vec{ b } = \left< a_y b_z - a_z b_y, a_z b_x - a_x b_z, a_x b_y - a_y b_x \right>
Then I wrote out \vec{\omega} in component form. Since it is chosen to lie along the z-axis, its x and y components are zero:
\vec{ \omega } = \left< 0, 0, \| \vec{ \omega } \| \right>
Then I wrote out \vec r. I simply named its components x, y, and z:
\vec{ r } = \left< x, y, z \right>
Then \vec{ \omega } \times \vec{ r } is:
\vec{ \omega } \times \vec{ r } = \left< -\| \vec{ \omega } \| y, \| \vec{ \omega } \| x, 0 \right>
And \vec{ \omega } \times \left( \vec{ \omega } \times \vec{ r } \right) is:
\vec{ \omega } \times \left( \vec{ \omega } \times \vec{ r } \right) = \left< -\| \vec{ \omega } \|^2 x, -\| \vec{ \omega } \|^2 y, 0 \right>
\vec{ \omega } \times \left( \vec{ \omega } \times \vec{ r } \right) = - \vec{ r } \| \vec{ \omega } \|^2
However, this is only the second term of the equation above (the first one under my attempt). The first term is missing. What did I do wrong?
I'm reading a classical mechanics book. In it, they show a derivation of the centrifugal force equation:
\vec{ F_{\textrm{cf}}} = -m \vec{ \omega } \times \left( \vec{ \omega } \times \vec{ r } \right)
I understood the derivation up to that point. However, they have a couple additional steps after that whereby they derive another equation based on this one. It is valid if the axis of rotation is chosen to lie along the z-axis:
\vec{ F_{\textrm{cf}}} = m \| \vec{ \omega } \| ^ 2 \vec \rho
Here, \vec \rho is the "cylindrical-radius vector to the particle from the z-axis".
The derivation only shows a couple steps:
\vec{ F_{\textrm{cf}}} = -m \vec{ \omega } \times \left( \vec{ \omega } \times \vec{ r } \right)
\vec{ F_{\textrm{cf}}} = -m \left[ \vec{ \omega } \left( \vec{ \omega } \cdot \vec{ r } \right) - \vec{r} \omega^{2} \right]
\vec{ F_{\textrm{cf}}} = m \| \vec{ \omega } \| ^ 2 \left( x \mathbf{\hat{x}} + y \mathbf{\hat{y}} \right)
\vec{ F_{\textrm{cf}}} = m \| \vec{ \omega } \| ^ 2 \vec \rho
I'm confused about how they went from the first step to the second step. Can anyone please help?
Attempt at a solution
If the first two steps in the derivation are valid, it would imply this:
\vec{ \omega } \times \left( \vec{ \omega } \times \vec{ r } \right) = \vec{ \omega } \left( \vec{ \omega } \cdot \vec{ r } \right) - \vec{r} \| \vec \omega \|^{2}
So I decided to work with the left side of this equation and hope that it would yield the right side. I used this definition of the cross product:
\vec{ a } \times \vec{ b } = \left< a_y b_z - a_z b_y, a_z b_x - a_x b_z, a_x b_y - a_y b_x \right>
Then I wrote out \vec{\omega} in component form. Since it is chosen to lie along the z-axis, its x and y components are zero:
\vec{ \omega } = \left< 0, 0, \| \vec{ \omega } \| \right>
Then I wrote out \vec r. I simply named its components x, y, and z:
\vec{ r } = \left< x, y, z \right>
Then \vec{ \omega } \times \vec{ r } is:
\vec{ \omega } \times \vec{ r } = \left< -\| \vec{ \omega } \| y, \| \vec{ \omega } \| x, 0 \right>
And \vec{ \omega } \times \left( \vec{ \omega } \times \vec{ r } \right) is:
\vec{ \omega } \times \left( \vec{ \omega } \times \vec{ r } \right) = \left< -\| \vec{ \omega } \|^2 x, -\| \vec{ \omega } \|^2 y, 0 \right>
\vec{ \omega } \times \left( \vec{ \omega } \times \vec{ r } \right) = - \vec{ r } \| \vec{ \omega } \|^2
However, this is only the second term of the equation above (the first one under my attempt). The first term is missing. What did I do wrong?
Last edited: