How to Evaluate the Integral of y/sqrt(1-y^2) using Substitution

  • Thread starter Thread starter yoleven
  • Start date Start date
  • Tags Tags
    Integrals
yoleven
Messages
78
Reaction score
1

Homework Statement


\int sin^-1y dy

The Attempt at a Solution


u=sin^-1y
du=\frac{1}{\sqrt{1-y^2}}
v=y
dv=dy

\int udv=uv- \int vdu

=ysin^-1y-\int \frac{y}{\sqrt{1-y^2}}

my main trouble is evaluating the integral at this point.
I would appreciate it if someone could show me how to evaluate the integral
\int \frac{y}{\sqrt{1-y^2}}

If it was \frac{1}{y} then I can see it would be ln x
 
Physics news on Phys.org
Assuming the work leading to your last integral is correct (I didn't check), you can use an ordinary substitution, u = 1 - y^2, du = -2u du. It's pretty straightforward.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top