Help with Integration Problem: Explicit Calculation Guide | PhysicsFans.org

  • Thread starter Thread starter cosmology
  • Start date Start date
  • Tags Tags
    Integration
cosmology
Messages
14
Reaction score
0
who can help me?how to derive (1)
please show me explict calculation
http://www.physicsfans.org/attachments/month_0706/20070608_115b22fb8b269180c1c7QsOB3UoXbLLO.gif
 
Last edited by a moderator:
Physics news on Phys.org
Nobody's going to do your work for you. The guidlines of this forum state that you need to show some work before you get help.
 
This integral isn't tough, its just bloody long! For the inner integral:

\frac{a-b}{c}ln(\frac{b+c-cx_2}{b})-\frac{a}{c}x_2

Here, a=1-x_2

b=\lambda^2(1-x_2)c=q^2x_2-\lambda^2.

For the second integral, you're on your own mate... good luck.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top