Help with Last Part of Assignment

  • Thread starter Thread starter rohan03
  • Start date Start date
  • Tags Tags
    Assignment
rohan03
Messages
56
Reaction score
0
i have typed and attached my question and my attempt here with. I am sure I know what I am doing but its a last part I am not sure about so any help would be great.

Thanks
 
Last edited:
Physics news on Phys.org
Looking at the second, bH, row, of course, bH*eh= bH is, of course, first. Then 'bH*bH' requires that you 'multiply' {b, g}*{b, g}= {b*b, b*g, g*b, g*g}= {a, e, e, a}= {a, e}= eH. 'bH*cH' is {b, g}*{c, h}= {d, f}= dH. 'bH*dH'= {b, g}*{d, f}= {c, h}= cH.
 
HallsofIvy said:
Looking at the second, bH, row, of course, bH*eh= bH is, of course, first. Then 'bH*bH' requires that you 'multiply' {b, g}*{b, g}= {b*b, b*g, g*b, g*g}= {a, e, e, a}= {a, e}= eH. 'bH*cH' is {b, g}*{c, h}= {d, f}= dH. 'bH*dH'= {b, g}*{d, f}= {c, h}= cH.

many thanks- this clarifies everything
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top