Help with using the first derivative

  • Thread starter Thread starter meeklobraca
  • Start date Start date
  • Tags Tags
    Derivative
meeklobraca
Messages
188
Reaction score
0

Homework Statement



Use the first derivative to determine where the graph of y = x/(x^2+1) is rising.

Homework Equations





The Attempt at a Solution



Ive figured the derivative to be (1-x^2) / (x^2+1)^2 and I know that the derivative > 0 will tell me where the graph is rising. I am just not sure how to figure that out. Do I need to simplify my derivative a bit more to make it work?
 
Physics news on Phys.org
The denominator will always be positive, so all you need to do is determine where the numerator is positive, and where negative. Factor 1 - x^2 and see where it is zero, and where positive, and where negative.
 
"Factor 1 - x^2 and see where it is zero, and where positive, and where negative."

Im not sure I know what you mean here. Factored form it is (x-1)(x+1)

Its 0 when x = +-1 , positive for 0<x<1 negative for (-infin,0) (1,infin)?
 
i think you may have missed the effect of one of the factors...

you could say (1-x^2) is +ve:
when
1-x^2 >0
implying
x^2 < 1
 
meeklobraca said:
"Factor 1 - x^2 and see where it is zero, and where positive, and where negative."

Im not sure I know what you mean here. Factored form it is (x-1)(x+1)

Its 0 when x = +-1 , positive for 0<x<1 negative for (-infin,0) (1,infin)?
"Factored form" is NOT (x- 1)(x+ 1), it is (1- x)(1+ x).

And the graph of y= (1-x)(1+x)= 1- x2, is a parabola opening downward and so y is positive for x between -1 and 1. I don't where you got the "0" in "0< x< 1". Was that a typo?
 
Last edited by a moderator:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top