High-energy physics: momentum transfer

Chiborino
Messages
19
Reaction score
0

Homework Statement


I have an electron of 20 GeV and negligible mass that collides with a stationary proton (mc^2 = 9.38 GeV) and deflects at an angle of 5°. I'm asked to find the square of the four-momentum transfer, q2

Homework Equations


q = P - P', where P/P' is a 4-momentum vector <px, py, pz, iE>
a "primed" quantity represents a value after the collision with the proton.

The Attempt at a Solution


I took the quantity P-P' and squared it:
q2 = (P-P')*(P-P') = P2 + P'2 -2P*P'
I'm told the first two terms are negligible due to the electron's mass being negligible, but I'm not sure I see the sense in that.
Anyways, continuing on, I then have:
q2 = -2P*P' = -2(px*px' + py*py'+pz*pz' -E*E')
or q2 = -2p*p' + 2E*E'
This is where I'm stuck. Should I also assume the product of the 3-momenta is 0 and carry on with the +2EE' term I'm left with? And what do I even do about the E' since I don't know that quantity?
 
Last edited:
Physics news on Phys.org
Chiborino said:

Homework Statement


I have an electron of 20 GeV and negligible mass that collides with a stationary proton (mc^2 = 9.38 GeV) and deflects at an angle of 5°. I'm asked to find the square of the four-momentum transfer, q2
That's a pretty massive proton!


Homework Equations


q = P - P', where P/P' is a 4-momentum vector <px, py, pz, iE>
a "primed" quantity represents a value after the collision with the proton.

The Attempt at a Solution


I took the quantity P-P' and squared it:
q2 = (P-P')*(P-P') = P2 + P'2 -2P*P'
I'm told the first two terms are negligible due to the electron's mass being negligible, but I'm not sure I see the sense in that.
Anyways, continuing on, I then have:
q2 = -2P*P' = -2(px*px' + py*py'+pz*pz' -E*E')
or q2 = -2p*p' + 2E*E'
This is where I'm stuck. Should I also assume the product of the 3-momenta is 0 and carry on with the +2EE' term I'm left with? And what do I even do about the E' since I don't know that quantity?
With the small deflection, you would expect that the electron didn't give up much of its energy, so you wouldn't expect the product of the three-momenta to vanish. Unfortunately, you're not going to be able to just erase terms you don't want to deal with.

You need to use conservation of energy and momentum to figure out ##\vec{p}'## and E'. Note that because the electron is essentially massless in this problem, the situation is essentially the same as Compton scattering.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top