Higher Order Differential Equations: Variation of parameter.

Sabricd
Messages
27
Reaction score
0
Hi,

I'm not exactly sure how to solve the following non-homogeneous ODE by variation of parameters.

Solve the given non-homogeneous ODE by the variation of parameters:

x^2y" + xy' -1/4y = 3/x + 3x

Can someone please point me in the right direction? Help will be much appreciated!
-Sabrina
 
Physics news on Phys.org
Sabricd said:
Hi,

I'm not exactly sure how to solve the following non-homogeneous ODE by variation of parameters.

Solve the given non-homogeneous ODE by the variation of parameters:

x^2y" + xy' -1/4y = 3/x + 3x

Can someone please point me in the right direction? Help will be much appreciated!
-Sabrina

First you solve the homogeneous equation for two independent solutions ##y_1## and ##y_2##. Have you done that?
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top