DCBaelar
- 2
- 0
Homework Statement
Find the total area inside the circle r = 4 and below the line r=2csc\theta
Homework Equations
\int^{b}_{a} 1/2r^{2}\thetad\theta
The Attempt at a Solution
r=2/sin\theta\Rightarrowrsin\theta=2\Rightarrowy=2
r=4\Rightarrow=circle with radius 4 at center (0,0)
Point of Intersection:
4=2/sin\theta\Rightarrow4sin\theta=2\Rightarrowsin\theta=2/4\Rightarrow\theta=\pi/6
\int^{pi/6}_{0} 1/2 (4-2csc\theta)^{2}d\theta
\int^{pi/6}_{0} 1/2 (16-4csc^{2}\thetad\theta)
\int^{pi/6}_{0} (8-2csc^{2}\thetad\theta)
(8\theta+2cot\theta)|^{pi/6}_{0}
(8*pi/6)+2cot(pi/6)-(8*0)-2cot(0)
4pi/3+2√3-0-undefined
And that's my problem..the undefined 2cot.
I think where I went wrong is that sinθ=1/2 at \pi/6 and 5\pi/6 and thus my boundaries of integration should be \pi/6 and 5\pi/6.
Am I on the right track?
Thanks for any feedback/assistance.
Jason
Last edited: