Horizontal component of the Coriolis force

AI Thread Summary
The Coriolis force acting on an object moving on Earth is defined by the equation Fcor = 2m(v × ω), where m is the object's mass, v is its velocity, and ω is Earth's angular velocity. The discussion questions whether the horizontal component of this force can be expressed as 2mωv sin θ, with θ being the angle between ω and v. It is clarified that this formula represents the magnitude of the Coriolis force, not specifically its horizontal component. Acknowledgment of the misunderstanding leads to a suggestion to review the relevant chapter for better comprehension. Understanding the distinction between the total force and its components is crucial for accurate application of the Coriolis effect.
MatinSAR
Messages
673
Reaction score
204
Homework Statement
Show that the horizontal component of the Coriolis force is independent of the direction of motion of the particle on Earth's surface.(The particle is moving on a horizontal plane.)
Relevant Equations
Newton's Laws in non-inertial reference frames.
The coriolis force that acts on the object moving on the Earth is: $$F_{cor}=2m(\vec v \times \vec \omega)$$##F_{cor}## is the Coriolis force, ##m## is the mass of the object, ## \vec{v}## is the velocity of the object in the Earth frame, and ## \vec{\omega}## is the angular velocity of the Earth.

Is it true to say that the horizontal component of this force is equal to ##2m \omega v \sin \theta## where ##\theta## is the angle between ##\vec \omega## and ##\vec v##?
 
Physics news on Phys.org
MatinSAR said:
Is it true to say that the horizontal component of this force is equal to ##2m \omega v \sin \theta## where ##\theta## is the angle between ##\vec \omega## and ##\vec v##?
That is the formula for the magnitude of the Coriolis force. Not for its horizontal component.
 
jbriggs444 said:
That is the formula for the magnitude of the Coriolis force. Not for its horizontal component.
Thank you for pointing out my mistake. I think I need to reread this chapter before trying to solve.
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanged mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top