How can enthalpy values be calculated for an isothermal process involving steam?

AI Thread Summary
To calculate enthalpy values for an isothermal process involving steam, relevant equations include those for heat transfer and enthalpy changes. The initial enthalpy can be determined using steam tables, while the final enthalpy depends on the condition of the working fluid at the exit, particularly if it is saturated water. If heat is added at constant pressure, the final enthalpy can be found by adding the heat value to the initial enthalpy. In an isothermal process, enthalpy increases until the mixture becomes saturated vapor, after which it remains constant despite pressure drops and volume increases. Understanding these principles is crucial for accurately determining enthalpy changes in steam processes.
Jameseyboy
Messages
25
Reaction score
1
What equations are relevant to finding the initial and final enthalpy values of an isothermal process?

There is an initial dryness fraction and a heat value is also added.

I know how to use steam tables to find the initial value of H but not the final. Does H even change?

Thanks
 
Engineering news on Phys.org
You need to provide a bit more detail about the specific problem. Suppose you are referring to condensation which is essentially isothermal heat rejection. So if you know the inital value of h (from an assumption of isentropic expansion through the turbine, for example), the final value of h will depend on the condition of the working fluid at the end. If you are told saturated water is present at the exit, that just means you can find the value of hf at the same temperature as that at the inlet (isothermal, T=constant).
 
I think this equation might solve your problem.

\frac{dE}{dt}=\dot{Q}-\dot{W}+\overbrace{\sum_{i}\dot{m_i}\left(h_i+\frac{v_{i}^{2}}{2}+z_i \right)}^{Inlet flow}-\overbrace{\sum_{j}\dot{m_j}\left(h_j+\frac{v_{j}^{2}}{2}+z_j \right)}^{Outlet flow}
 
I assume you know how to find the enthalpy of a saturated liquid- vapour mixture. If heat is transferred at constant pressure, ie. at saturation pressure, just add the amount of heat to the initial enthalpy value, to get to the final enthalpy value.
If heat addition is not isobaric, but isothermal, the enthalpy should increase till the mixture gets converted into saturated vapour. Beyond that, it would remain constant. You will see a pressure drop and increase in volume.
 
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly
Back
Top