A How can I calculate the square of the Pauli-Lubanski pseudovector?

tannhaus
Messages
2
Reaction score
0
TL;DR Summary
I need to calculate the square of the Pauli-Lubanski pseudovector in a rest frame such that the results is proportional to the square of the spin operator.
Hello there, recently I've been trying to demonstrate that, $$\textbf{W}^2 = -m^2\textbf{S}^2$$ in a rest frame, with ##W_{\mu}## defined as $$W_{\mu} = \dfrac{1}{2}\varepsilon_{\mu\alpha\beta\gamma}M^{\alpha\beta}p^{\gamma}$$ such that ##M^{\mu\nu}## is an operator of the form $$ M^{\mu\nu}=x^{\mu}p^{\nu} - x^{\nu}p^{\mu} + \frac{i}{2}\Sigma^{\mu\nu}$$ and ##S^i## defined as $$S_i = \varepsilon^{ijk}\frac{i}{2}\Sigma^{jk}$$ Where ##\Sigma^{\mu\nu} = [\beta^{\mu}, \beta^{\nu}]##. I've managed to show that ##\textbf{S}^2 = \dfrac{1}{2}\Sigma^{ij}\Sigma_{ij}## but I can't for my life work out the necessary result. Any sort of light towards this is very welcome!
 
Physics news on Phys.org
Your expressions are manifestly covariant. "Spin" for a massive particle is, however, most easily to interpret in the rest frame of the particle. So to have some intuitive picture, it's best to calculate it within this frame, and this is simply defined by ##(p^{\mu})=(m c,0,0,0)##. In this frame you have a pretty intuitive interpretation of "spin" and the Pauli Lubanski vector (the latter one being the only viable definition of spin in relativistic physics, where in general a unique split of total angular momentum into "spin" and "orbital" is not possible). For more on "classical spin" in relativity, see Sect. 1.8 in

https://itp.uni-frankfurt.de/~hees/pf-faq/srt.pdf

That becomes much clearer in the context of relativistic QFT and a detailed analysis of the representation theory of the Poincare group, where the Pauli Lubanski vector is the generator for little-group transformations, and the little group for massive-particle representations is the rotation group (or its covering group SU(2)) as defined in the rest frame of the particle. The quantities in other frames is then given by the (rotation free) Lorentz boosts from the rest frame of the particle to an arbitrary frame, where it's moving. For details see

https://itp.uni-frankfurt.de/~hees/publ/lect.pdf

(particularly Appendix B).
 
I asked a question here, probably over 15 years ago on entanglement and I appreciated the thoughtful answers I received back then. The intervening years haven't made me any more knowledgeable in physics, so forgive my naïveté ! If a have a piece of paper in an area of high gravity, lets say near a black hole, and I draw a triangle on this paper and 'measure' the angles of the triangle, will they add to 180 degrees? How about if I'm looking at this paper outside of the (reasonable)...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
Back
Top