How can I determine if two log functions are equivalent?

AI Thread Summary
To determine if the functions Y1 = log(X^26) and Y2 = 26 log(X) are equivalent, one can use the properties of logarithms. The property log(AB) = log(A) + log(B) implies that log(X^26) simplifies to 26 log(X), indicating that the two functions are indeed equivalent for positive values of X. The discussion also highlights the importance of considering the domain of logarithmic functions, as they are undefined for non-positive values. Participants suggest creating a table of values to visualize any differences, but the mathematical properties confirm their equivalence. Understanding these properties is crucial for analyzing logarithmic functions effectively.
merikukri
Messages
9
Reaction score
0
Graph Y1 = log (X^26) & Y2 = 26 Log (X) Are they Equivalent ?

I drew the graph using X values ( -5, -4, -3, ... , 4, 5 )
and I got graphs, but don't know how to account for any differences in two functions..
Can anyone in here help
 
Physics news on Phys.org
When working with logs, you should know that,

log(AB) = log(A) + log(B)

What does that tell you about,
log(AA) = ??

what about.
log(AAA) = ?

etc.
 
Why not show us your table of values?
 
Back
Top