Tengo said:
How can I find te integral of root(x*x+x+1)Thank you
I'm assuming you're talking about this "animal".
I=\int \sqrt{x^{2}+x+1} dx =\int \sqrt{(x+\frac{1}{2})^{2}+\frac{3}{4}} dx (1)
Like Halls said,make the first substitution x+\frac{1}{2}\rightarrow u (2)
and u'll get
I=\int \sqrt{u^{2}+\frac{3}{4}} du (3)
Write this integral as
I=\int \sqrt{\frac{3}{4}} \sqrt{(\sqrt{\frac{4}{3}} u)^{2} +1} du (4)
and make the substitution
\sqrt{\frac{4}{3}} u\rightarrow \sinh v (5)
,under which:
du\rightarrow \sqrt{\frac{3}{4}} \cosh v dv (6)
,so the integral becomes:
I=\frac{3}{4}\int \cosh^{2}v dv (7)
,where i have made use of the fundamental formula of hyperbolic trigometry
\cosh^{2}v-\sinh^{2}v =1 (8)
Use the formula of the double angle:
\cosh^{2}v=\frac{1+\cosh 2v}{2}(9)
to solve the integral in terms of 'v'.Return to the initial variable 'x' via the substitutions (5) and (2).
Daniel.