marc017
- 7
- 0
This isn't homework, It is just book problems that I am practicing, I am checking some answers with wolfram and others with the book answers.
<br /> \begin{align}<br /> \int \frac{sin(w)\,dw}{\sqrt{1-cos(w)}}\\<br /> \end{align}<br />
I used u substitution... Not sure if I approached this problem the correct way
<br /> \begin{align}<br /> \int \frac{sin(w)\,dw}{\sqrt{1-cos(w)}}\\<br /> \end{align}<br />
Using U sub... U = cos(w), du = -sin(w)
<br /> \begin{align}<br /> - \int \frac{\,du}{\sqrt{1-u}}\\<br /> \end{align}<br />
Using n sub... n=1-u, dn = -1
<br /> \begin{align}<br /> \int \frac{\,du}{\sqrt{n}} = 2\sqrt{(1-cos(w))} + C\\<br /> \end{align}<br />
Homework Statement
<br /> \begin{align}<br /> \int \frac{sin(w)\,dw}{\sqrt{1-cos(w)}}\\<br /> \end{align}<br />
Homework Equations
I used u substitution... Not sure if I approached this problem the correct way
The Attempt at a Solution
<br /> \begin{align}<br /> \int \frac{sin(w)\,dw}{\sqrt{1-cos(w)}}\\<br /> \end{align}<br />
Using U sub... U = cos(w), du = -sin(w)
<br /> \begin{align}<br /> - \int \frac{\,du}{\sqrt{1-u}}\\<br /> \end{align}<br />
Using n sub... n=1-u, dn = -1
<br /> \begin{align}<br /> \int \frac{\,du}{\sqrt{n}} = 2\sqrt{(1-cos(w))} + C\\<br /> \end{align}<br />
Last edited: