F(t)=\int_ \! (\frac{1}{\sqrt{1-s^{2} } } \frac{Phi(s)}{t-s} ) \, ds
(integrals are from -1 to +1)
this equation may be solved by the Gauss-Chebyshev integration formulae:
assume that Phi(s) can be appoximated by the fallowing truncated series:
Phi(s)= \sum\limits_{j=1}^m a_{j}T_{j}(s)
so that the integral now reads
\sum\limits_{j=1}^m a_{j} \int_ \! (\frac{1}{\sqrt{1-s^{2} } } )(\frac{T_{j}(s) }{t-s} ) \, ds |t|<1
and my task is to evaluate the unknown coefficients a_{j} . The integral may be evaluated through the relation :
for j=0 :
\int_\! (\frac{1}{\sqrt{1-s^{2} } } )(\frac{T_{j}(s) }{t-s} ) \, ds = 0
for j>0 :
\int_ \! (\frac{1}{\sqrt{1-s^{2} } } )(\frac{T_{j}(s) }{t-s} ) \, ds = U_{j-1}(t)
so that
F(t)=\sum\limits_{j=1}^m a_{j} U_{j-1}(t)
we next note the fallowing relation :
for j=0
\frac{1}{N}\sum\limits_{i=1}^N \frac{T_{j}(s_{i}) }{s_{i}-t_{k}) } = 0
for 0<j<N :
\frac{1}{N}\sum\limits_{i=1}^N \frac{T_{j}(s_{i}) }{s_{i}-t_{k}) } = U_{j-1}(t_{k} )
where the points are the N roots of T_{N}(s) and the points t_{k} are the N-1 roots of U_{N-1}(t) .
It follows that
F(t_{k})=\sum\limits_{j=1}^m a_{j} U_{j-1}(t_{k})=\frac{\pi }{N} \sum\limits_{i=1}^N [ \sum\limits_{j=1}^m a_{j} T_{j}(s_{i}) ] \frac{1}{s_{i} -t_{k} } = \frac{\pi }{N} \sum\limits_{i=1}^N \frac{Phi(s_{i} )}{s_{i} -t_{k} }
where the integration points are:
s_{i} = \cos(\pi \frac{2i-1}{2N}) i=1...N
t_{k} = \cos(\pi \frac{k}{N}) i=1...N-1
the weights (\frac{\pi }{N} ) .
für das Gleichungssystem mit mehreren variablen
F(t_{k})=\sum\limits_{j=1}^m a_{j} U_{j-1}(t_{k}).
wo
F(t_{k}) und U_{j-1}(t_{k}) bekannt
und
a_{j} unbekannt.
wie kann ich bitte dieses Gleichungssystem
a_{j} = U_{j-1}(t_{k}) \ F(t_{k})
in MatLAB lösen.
mir fehlt Code.