How can the difference quotient be used to simplify the expression for y=2^x?

mrg
Messages
16
Reaction score
0
1. Simplify the algebraic expression you get for Δy and Δy/Δx for the equation y=2^x



2. Use the difference quotient (f(x+h)-f(x))/h. No use of chain rule or other shortcuts.



3. I've tried a host of things, including raising terms to a natural log power (I.e. e^(ln2)*x*h), using logarithm properties, simplifying things... It seems that I cannot get rid of an h in some denominator. Now, this is a problem well before we actually learn derivatives, so things like that chain rule and implicit differentiation haven't been learned. This is a problem to challenge the kids with their difference quotient skills. I'm beginning to fear that it can't be done.
 
Physics news on Phys.org
There is no way to get rid of the ##h## in the denominator. The best you can do is either write it as $$\frac{2^x\ln 2(e^{h\ln 2}-1)}{h\ln 2}=\frac{2^x\ln 2(e^{u}-1)}{u}$$ and go from there, knowing that ##\lim_{u\rightarrow 0}\frac{e^{u}-1}{u}=1## or, if you know that $$\lim_{h\rightarrow 0}\frac{a^{h}-1}{h}=\ln a$$ (i.e. the general version of the known limit) then you can use that.

But there is no way to algebraically simplify this limit so that you can just plug in ##h=0## like you can with the derivative limits for the algebraic functions.

FYI, you need some "advanced tech" for the trig derivatives as well.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top