How can the forces on a pendulum be calculated when encountering a peg?

  • Thread starter Thread starter kero
  • Start date Start date
  • Tags Tags
    Hard Mechanics
AI Thread Summary
To calculate the forces on a pendulum encountering a peg, one must analyze the pendulum's motion at both the initial and final positions. The equations involving forces alone may not yield correct results, as they can lead to contradictions like r equaling L. Instead, applying conservation of energy is crucial, particularly when the string becomes slack and the pendulum transitions to projectile motion. Key steps include determining the angle at which the pendulum enters projectile motion, calculating its velocity at that point, and ensuring all variables cancel out to derive the desired equation. Ultimately, this approach leads to the correct expression for cos(θ) in relation to r, L, and α.
kero
Messages
5
Reaction score
0

Homework Statement


a pendulum of mass m and length L is pulled back an angle θ and released. After the pendulum swings through its lowest point, it encounters a peg α degrees out and r meters from the top of the string. The mass swings up about the peg until the string becomes slack with the mass falling inward and hitting the peg. show that cosθ=r/Lcosα-√3/2(1-r/L)
image: http://s3.amazonaws.com/answer-board-image/d5a0e79b1d3c5c20451488d56a3b27d7.jpg

The Attempt at a Solution



I tried to find the forces on the pendulum at the initial and final position
Lcosθ-mg=0
Lsinθ=ma
rcosθ-mg=0
rsinθ=ma
but it doesn't seem to work at all. what I get is that r=L which is impossible.
 
Physics news on Phys.org
use conservation of energy, forces arent going to help you much here
 
You need to set up equations for each of the following:
1. The projectile motion problem that starts when the string is no longer taught.
2. The position (angle) at which the ball enters projectile motion (when the gravitational force inward surpasses the necessary centripetal force).
3. The ball's velocity (using conservation of energy) when it enters projectile motion.

Then you will need to combine all of those so that the angle you found in (2) cancels out, the time component you introduced in (1) also cancels out, and the velocity you solved for in (3) should cancel out. Once you solve this for cos(θ) you should get the answer written.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top