How can the integral \phi(x,t) be solved analytically?

  • Thread starter Thread starter autobot.d
  • Start date Start date
  • Tags Tags
    Integral
autobot.d
Messages
67
Reaction score
0

Homework Statement



\phi\left(x,t\right)=\frac{1}{2\pi}\int^{\infty}_{-\infty}e^\left(i\left(xk-tk^2\right)\right)dk


Homework Equations


Solve for \phi analytically


The Attempt at a Solution


completing the square of the exponent to give me

\phi\left(x,t\right)=\frac{1}{2\pi}\int^{\infty}_{-\infty}e^\left(-ti\left(k^2-\frac{x}{t}k + \frac{x^2}{4t^2} - \frac{x^2}{4t^2}\right)\right)dk

Simplifying I get
\phi\left(x,t\right)=\frac{e^\frac{x^2}{4t}}{2\pi}\int^{\infty}_{-\infty}e^\left(-ti\left(k-\frac{x}{2t}\right)^2\right)dk

From here I don't know

tried u substitution

u=k-\frac{x}{2t} , du=dk
but this gets me nowhere
any help is appreciated
 
Physics news on Phys.org
hi autobot.d! :smile:

there's a standard way of solving ∫-∞ e-u2 du, which you need to be familiar with …

it's something like √π (i forget exactly :redface:)
 
The problem is that there is an i in there

\int^{\infty}_{-\infty}e^\left(-\mathbf{i} tu^2\right) du

The i is what I am having the problem with.

Thanks for the help.
 
Last edited:
that wikipedia link mentions the contour integral proof

a detailed version is at http://planetmath.org/encyclopedia/FresnelFormulae.html" :wink:
 
Last edited by a moderator:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top