Bob19
- 71
- 0
Hello I'm Presented with the following Poisson distribution question
P(X = x) = \frac{e^{-\lambda} \cdot \lambda^{x}}{x!}
where x \in (1,2,3,\ldots) and \lambda > 0
Then I'm suppose to show that the above can be re-written if
P(X \leq 1) = 1 - e^{- \lambda}
Any idears on how I do that?
I'm told \sum_{x=0} ^ {\infty} p(x) = \frac{e^{- \lambda} \cdot \lambda^{x}}{x!} = e^{- \lambda} \sum _{x=0} ^{\infty} \frac{\lambda ^{x}}{x!}
if \lambda ^{x} = 1
then p(x) = e^{- \lambda}
This must give P(X \leq 1) = 1- e^{- \lambda}
Can anybody please tell me if I'm on the right track here?
Sincerley Bob
P(X = x) = \frac{e^{-\lambda} \cdot \lambda^{x}}{x!}
where x \in (1,2,3,\ldots) and \lambda > 0
Then I'm suppose to show that the above can be re-written if
P(X \leq 1) = 1 - e^{- \lambda}
Any idears on how I do that?
I'm told \sum_{x=0} ^ {\infty} p(x) = \frac{e^{- \lambda} \cdot \lambda^{x}}{x!} = e^{- \lambda} \sum _{x=0} ^{\infty} \frac{\lambda ^{x}}{x!}
if \lambda ^{x} = 1
then p(x) = e^{- \lambda}
This must give P(X \leq 1) = 1- e^{- \lambda}
Can anybody please tell me if I'm on the right track here?
Sincerley Bob
Last edited: