How can we prove the derivative of tan(y/2) is 2/(1 + x²)?

  • Thread starter Thread starter thomas49th
  • Start date Start date
thomas49th
Messages
645
Reaction score
0
Prove:

\frac{Sec^{2}\frac{y}{2}}{2} \eqiv \frac{2}{1+x^{2}}

Well i know from the pythagorean identities that tan^{2}x + 1 = sec^{2}x
so

\frac{tan^{2}\frac{y}{2} + 1}{2} \eqiv \frac{2}{1+x^{2}}

But now I am stuck!

If your interested the full qusetion is page 35, question 7 (ii) here:

http://www.edexcel.org.uk/VirtualContent/105484/GCE_Pure_Maths_C1_C4_Specimen_Paper_MkScheme.pdf

Can someone point me in the right direction

Cheerz
 
Physics news on Phys.org
The actual question is:

Given that x = tan(y/2), prove that dy/dx = 2/(1 + x²).​

thomas49th, just differentiate both sides of x = tan(y/2). :smile:
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top