How Can We Show that <x> = ∫ Φ* (-ħ/i) ∂Φ/∂p dp in Quantum Mechanics?

NeoDevin
Messages
334
Reaction score
2

Homework Statement


Show that

&lt;x&gt; = \int \Phi^* \left(-\frac{\hbar}{i}\frac{\partial}{\partial p} \right) \Phi dp


Homework Equations



\Phi(p,t) = \frac{1}{\sqrt{2\pi\hbar}} \int^{\infty}_{-\infty} e^{\frac{-ipx}{\hbar}} \Psi(x,t)dx

\Psi(x,t) = \frac{1}{\sqrt{2\pi\hbar}} \int^{\infty}_{-\infty} e^{\frac{ipx}{\hbar}} \Phi(p,t)dp

The Attempt at a Solution



I started out with

&lt;x&gt; = \int^{\infty}_{-\infty} \Psi^* x \Psi dx

Using the above equation for \Psi(x,t) (and it's conjugate) gives:

\Psi^* (x,t) = \frac{1}{\sqrt{2\pi\hbar}} \int^{\infty}_{-\infty} e^{\frac{-ipx}{\hbar}} \Phi(p,t)dp

and

x\Psi(x,t) = \frac{x}{\sqrt{2\pi\hbar}} \int^{\infty}_{-\infty} e^{\frac{ipx}{\hbar}} \Phi(p,t)dp

= \frac{1}{\sqrt{2\pi\hbar}} \int^{\infty}_{-\infty} x e^{\frac{ipx}{\hbar}} \Phi(p,t)dp

= \frac{1}{\sqrt{2\pi\hbar}} \int^{\infty}_{-\infty} \frac{\partial}{\partial p} e^{\frac{ipx}{\hbar}} \Phi(p,t)dp

= \frac{1}{\sqrt{2\pi\hbar}} \left[ \left( e^{\frac{ipx}{\hbar}} \Phi(p,t) \right) \bigg|^{\infty}_{-\infty} -\int^{\infty}_{-\infty} e^{\frac{ipx}{\hbar}} \frac{\partial}{\partial p}\Phi(p,t)dp \right]

= -\frac{1}{\sqrt{2\pi\hbar}} \int^{\infty}_{-\infty} e^{\frac{ipx}{\hbar}} \frac{\partial}{\partial p} \Phi(p,t) dp

Substituting into the original equation for &lt;x&gt; then gives

&lt;x&gt; = \int^{\infty}_{-\infty}\left( \frac{1}{\sqrt{2\pi\hbar}} \int^{\infty}_{-\infty}e^{\frac{-ipx}{\hbar}} \Phi^* (p,t) dp \right) x\Psi(x,t) dx

= \frac{1}{\sqrt{2\pi\hbar}} \int^{\infty}_{-\infty} \Phi^* (p,t) \int^{\infty}_{-\infty} e^\frac{-ipx}{\hbar} (x\Psi(x,t))dx dp

= -\frac{1}{2\pi\hbar} \int^{\infty}_{-\infty} \Phi^* (p,t) \int^{\infty}_{-\infty} e^{\frac{-ipx}{\hbar}} \int^{\infty}_{-\infty} e^{\frac{ipx}{\hbar}} \frac{\partial}{\partial p} \Phi(p,t) dp dx dp

= -\frac{1}{2\pi\hbar} \int^{\infty}_{-\infty} \Phi^* (p,t) \int^{\infty}_{-\infty} \frac{\partial}{\partial p} \Phi(p,t) \int^{\infty}_{-\infty} e^{\frac{-ipx}{\hbar}} e^{\frac{ipx}{\hbar}} dx dp dp

= -\frac{1}{2\pi\hbar} \int^{\infty}_{-\infty} \Phi^* (p,t) \int^{\infty}_{-\infty} \frac{\partial}{\partial p} \Phi(p,t) \int^{\infty}_{-\infty} dx dp dp

I'm pretty sure I messed up somewhere, since that integral is infinite...

Any help would be appreciated.
 
Last edited:
Physics news on Phys.org
I also tried the reverse, starting with the expression you're supposed to get for <x>, and working back from there using similar methods... but it gives me the same problem.
 
Last edited:
Your calculation seems fine up until the point where you substitute your expression for x\Psi(x,t). You should be integrating over two dummy variables in your final expression, say p and p^{\prime}, but you have written both dummy variables as the same variable p. The expression you derived for x\Psi(x,t) in terms of an integral over p, change p to p^{\prime} and everything should work out.
 
So then for the second last line we end up with
&lt;x&gt; = -\frac{1}{2\pi\hbar} \int^{\infty}_{-\infty} \Phi^* (p,t) \int^{\infty}_{-\infty} \frac{\partial}{\partial p&#039;} \Phi(p&#039;,t) \int^{\infty}_{-\infty} e^{\frac{-i(p-p&#039;)x}{\hbar}} dx \ dp&#039; \ dp

Is that integral doable?
 
You should recognize the x integral as a delta function.
 
Oh, right... Duh. :blushing: Got it now
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top