NeoDevin
- 334
- 2
Homework Statement
Show that
<x> = \int \Phi^* \left(-\frac{\hbar}{i}\frac{\partial}{\partial p} \right) \Phi dp
Homework Equations
\Phi(p,t) = \frac{1}{\sqrt{2\pi\hbar}} \int^{\infty}_{-\infty} e^{\frac{-ipx}{\hbar}} \Psi(x,t)dx
\Psi(x,t) = \frac{1}{\sqrt{2\pi\hbar}} \int^{\infty}_{-\infty} e^{\frac{ipx}{\hbar}} \Phi(p,t)dp
The Attempt at a Solution
I started out with
<x> = \int^{\infty}_{-\infty} \Psi^* x \Psi dx
Using the above equation for \Psi(x,t) (and it's conjugate) gives:
\Psi^* (x,t) = \frac{1}{\sqrt{2\pi\hbar}} \int^{\infty}_{-\infty} e^{\frac{-ipx}{\hbar}} \Phi(p,t)dp
and
x\Psi(x,t) = \frac{x}{\sqrt{2\pi\hbar}} \int^{\infty}_{-\infty} e^{\frac{ipx}{\hbar}} \Phi(p,t)dp
= \frac{1}{\sqrt{2\pi\hbar}} \int^{\infty}_{-\infty} x e^{\frac{ipx}{\hbar}} \Phi(p,t)dp
= \frac{1}{\sqrt{2\pi\hbar}} \int^{\infty}_{-\infty} \frac{\partial}{\partial p} e^{\frac{ipx}{\hbar}} \Phi(p,t)dp
= \frac{1}{\sqrt{2\pi\hbar}} \left[ \left( e^{\frac{ipx}{\hbar}} \Phi(p,t) \right) \bigg|^{\infty}_{-\infty} -\int^{\infty}_{-\infty} e^{\frac{ipx}{\hbar}} \frac{\partial}{\partial p}\Phi(p,t)dp \right]
= -\frac{1}{\sqrt{2\pi\hbar}} \int^{\infty}_{-\infty} e^{\frac{ipx}{\hbar}} \frac{\partial}{\partial p} \Phi(p,t) dp
Substituting into the original equation for <x> then gives
<x> = \int^{\infty}_{-\infty}\left( \frac{1}{\sqrt{2\pi\hbar}} \int^{\infty}_{-\infty}e^{\frac{-ipx}{\hbar}} \Phi^* (p,t) dp \right) x\Psi(x,t) dx
= \frac{1}{\sqrt{2\pi\hbar}} \int^{\infty}_{-\infty} \Phi^* (p,t) \int^{\infty}_{-\infty} e^\frac{-ipx}{\hbar} (x\Psi(x,t))dx dp
= -\frac{1}{2\pi\hbar} \int^{\infty}_{-\infty} \Phi^* (p,t) \int^{\infty}_{-\infty} e^{\frac{-ipx}{\hbar}} \int^{\infty}_{-\infty} e^{\frac{ipx}{\hbar}} \frac{\partial}{\partial p} \Phi(p,t) dp dx dp
= -\frac{1}{2\pi\hbar} \int^{\infty}_{-\infty} \Phi^* (p,t) \int^{\infty}_{-\infty} \frac{\partial}{\partial p} \Phi(p,t) \int^{\infty}_{-\infty} e^{\frac{-ipx}{\hbar}} e^{\frac{ipx}{\hbar}} dx dp dp
= -\frac{1}{2\pi\hbar} \int^{\infty}_{-\infty} \Phi^* (p,t) \int^{\infty}_{-\infty} \frac{\partial}{\partial p} \Phi(p,t) \int^{\infty}_{-\infty} dx dp dp
I'm pretty sure I messed up somewhere, since that integral is infinite...
Any help would be appreciated.
Last edited: