applechu
- 10
- 0
Hi:
I have a problem about combine bases from subspaces. This is part of orthogonality.
The examples as following:
For A=##\begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}## split x= ##\begin{bmatrix} 4 \\ 3 \end{bmatrix}## into ##x_r##+##x_n##=##\begin{bmatrix} 2 \\ 4 \end{bmatrix}+\begin{bmatrix} 2 \\ -1 \end{bmatrix}##
I don't know why it can split into ##x_r##+##x_n##, and how to prove that,
thanks a lot
I have a problem about combine bases from subspaces. This is part of orthogonality.
The examples as following:
For A=##\begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}## split x= ##\begin{bmatrix} 4 \\ 3 \end{bmatrix}## into ##x_r##+##x_n##=##\begin{bmatrix} 2 \\ 4 \end{bmatrix}+\begin{bmatrix} 2 \\ -1 \end{bmatrix}##
I don't know why it can split into ##x_r##+##x_n##, and how to prove that,
thanks a lot
Last edited: