How Do Electrons Form a Bond in Covalent Bonding Despite Their Mutual Repulsion?

  • Thread starter Thread starter bronx
  • Start date Start date
  • Tags Tags
    Bonding Electron
AI Thread Summary
The discussion centers on the principles of chemical bonding, particularly covalent bonding, and the apparent contradiction of like charges repelling while electrons form bonds. In a hydrogen molecule, two positively charged nuclei attract two electrons, which repel each other, creating a local equilibrium that defines the bond. This balance is similar to helium, where two electrons coexist around positively charged nuclei despite their mutual repulsion. The attraction between electrons and nuclei is not due to gravity but rather the interaction of instantaneous dipoles as atoms approach each other. The key to bond formation lies in quantum mechanics; according to Heisenberg's uncertainty principle, electrons can occupy a larger space when bonded, leading to lower kinetic energy and greater stability, thus facilitating the formation of chemical bonds despite the repulsive forces at play.
bronx
Messages
4
Reaction score
0
There's a rule bout unlike charges attract and like charges repel one another. How is it that in chemical bonding like in covalent bonding electrons form a bond or there is attraction from one unto the other. Isn't that ironic?
 
Chemistry news on Phys.org
Well, to take the simplest example of the bond in a hydrogen molecule, you have two positively charged nuclei, and two electrons. Each electron is attracted to both nuclei, but repelled by the other electron. Chemical bonds are then a sort of compromise; it's a local equilibrium where it would take more energy to smoosh them closer closer together or pull them further apart.

That two electrons can be in the vicinity of positively charged nuclei is not without precedent.
After all, Helium atoms have two electrons orbiting each of them and are stable, even though the electrons repel each other.
 
jfizzix said:
Well, to take the simplest example of the bond in a hydrogen molecule, you have two positively charged nuclei, and two electrons. Each electron is attracted to both nuclei, but repelled by the other electron. Chemical bonds are then a sort of compromise; it's a local equilibrium where it would take more energy to smoosh them closer closer together or pull them further apart.

That two electrons can be in the vicinity of positively charged nuclei is not without precedent.
After all, Helium atoms have two electrons orbiting each of them and are stable, even though the electrons repel each other.
But isn't Hydrogen atom electrically neutral? One +p and -e, what is then the attraction between one over the other? Is it not gravity or something?
 
Last edited:
bronx said:
But isn't Hydrogen atom electrically neutral? One +p and -e, what is then the attraction between one over the other? Is it not gravity or something?
Forget about gravity. What you have, at long range, is the interaction of the instantaneous dipole. As the two atoms get closer, you will have the electron of one atom having a non-negligible overlap with the nucleus of the other atom.
 
  • Like
Likes bronx
DrClaude said:
Forget about gravity. What you have, at long range, is the interaction of the instantaneous dipole. As the two atoms get closer, you will have the electron of one atom having a non-negligible overlap with the nucleus of the other atom.
That's is more real I agree. thanks.
 
bronx said:
How is it that in chemical bonding like in covalent bonding electrons form a bond or there is attraction from one unto the other. Isn't that ironic?
There is no attraction between the electrons and mutual repulsion of the electrons is rather an obstacle to bond formation. As others pointed out already, this repulsion is partially made off by the attraction of the nuclei, but this wouldn't explain bonding.
The real reason behind bond formation is a quantum mechanical one: According to Heisenberg's uncertainty relation, the average momentum of an electron will be the lower, the more space it can occupy. Lower momentum also means lower kinetic energy. In a molecule, an electron has the chance to be found on either of two atoms instead of only one before bond formation. Hence it can occupy more space and it's kinetic energy gets lower.
 
  • Like
Likes bronx
It seems like a simple enough question: what is the solubility of epsom salt in water at 20°C? A graph or table showing how it varies with temperature would be a bonus. But upon searching the internet I have been unable to determine this with confidence. Wikipedia gives the value of 113g/100ml. But other sources disagree and I can't find a definitive source for the information. I even asked chatgpt but it couldn't be sure either. I thought, naively, that this would be easy to look up without...
I was introduced to the Octet Rule recently and make me wonder, why does 8 valence electrons or a full p orbital always make an element inert? What is so special with a full p orbital? Like take Calcium for an example, its outer orbital is filled but its only the s orbital thats filled so its still reactive not so much as the Alkaline metals but still pretty reactive. Can someone explain it to me? Thanks!!
Back
Top