How Do Fermion Commutation Relations Affect Current Operators in 2D Spacetime?

Maybe_Memorie
Messages
346
Reaction score
0

Homework Statement


Consider left-handed fermions in two spacetime dimensions ##(t,x)##: ##\psi_L=\frac{1}{2}(1-\gamma_5)\psi_D## with ##J_0^\epsilon(t,x)=\psi_L^+(x+\epsilon)\psi_L(x-\epsilon)##.

(a). Use canonical equal-time anti-commutation relations for fermions to compute
##[J_0^\epsilon(t,x),J_0^\epsilon(t,y)]##

(b). Take ##\langle 0 \mid\psi_L^+(t,x)\psi_L(t,y)\mid 0 \rangle=\frac{1}{x-y}## and evaluate
##\langle 0 \mid[J_0^\epsilon(t,x),J_0^\epsilon(t,y)]\mid 0 \rangle## and its limit for ##\epsilon \rightarrow 0##.

Homework Equations

The Attempt at a Solution



For part (a) I got ##[J_0^\epsilon(t,x),J_0^\epsilon(t,y)]=\delta^3(x-y-2\epsilon)\psi_L^+(x+\epsilon)\psi_L(y-\epsilon)-\delta^3(y-x-2\epsilon)\psi_L^+(y+\epsilon)\psi_L(x-\epsilon)##.

Using this expression means for (b) I get in the limit ##\epsilon \rightarrow 0##

##\langle 0\mid [J_0^\epsilon(t,x),J_0^\epsilon(t,y)]\mid 0 \rangle=\frac{2\delta^3(x-y)}{x-y}##

which seems a bit too easy. What's going wrong?
 
Physics news on Phys.org
bump
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top