How do I find the derivative of x^x using the difference quotient?

  • Thread starter Thread starter lapenna
  • Start date Start date
  • Tags Tags
    Derivative
lapenna
Messages
1
Reaction score
0

Homework Statement



I am required to find the derivative of x^x using the difference quotient

Homework Equations



((x+h)^(x+h)-(x^x))/h

The Attempt at a Solution



TI-89 gives (lnx+1)x^x I can't figure out how to get there
 
Physics news on Phys.org
Without the derivative definition, ln both sides, so:

y=x^x
ln(y)=xln(x)
\frac{1}{y}.\frac{dy}{dx} = 1.ln(x) + x.\frac{1}{x}
\frac{dy}{dx} = y[ln(x) + 1]
\frac{dy}{dx} = x^x(ln(x) + 1)
 
I can't imagine there being any reasonable way to use the "difference quotient" to determine the derivative of xx. You must have a really evil teacher!
 
HallsofIvy said:
I can't imagine there being any reasonable way to use the "difference quotient" to determine the derivative of xx. You must have a really evil teacher!

Either this is unreasonable, or your imagination really needs to see more:

x^x =e^{x\ln x}

\lim_{h\rightarrow 0} \frac{(x+h)^{(x+h)}-x^x}{h} =\lim_{h\rightarrow 0} \frac{e^{(x+h)\ln(x+h)}-e^{x\ln x}}{h}=\lim_{h\rightarrow 0}\frac{e^{(x+h)\ln\left(x\left(1+\frac{h}{x}\right)\right)}-e^{x\ln x}}{h}

=\lim_{h\rightarrow 0} \frac{e^{x\ln x}e^{h\ln x}e^{x\ln\left(1+\frac{h}{x}\right)}e^{h\ln\left(1+\frac{h}{x}\right)}-e^{x\ln x}}{h}

=x^{x}\lim_{h\rightarrow 0}\frac{e^{h\ln x}e^{x\ln\left(1+\frac{h}{x}\right)}e^{h\ln\left(1+\frac{h}{x}\right)}-1}{h}\cdot \frac{h\ln x+x\ln\left(1+\frac{h}{x}\right)+h\ln\left(1+\frac{h}{x}\right)}{h\ln x+x\ln\left(1+\frac{h}{x}\right)+h\ln\left(1+\frac{h}{x}\right)}

=x^{x}\left[\ln x+x\lim_{h\rightarrow 0}\frac{\ln\left(1+\frac{h}{x}\right)}{h}+\lim_{h\rightarrow 0}\ln\left(1+\frac{h}{x}\right)\right]

=x^x \left\{\ln x+x\ln \lim_{h\rightarrow 0}\left[\left(1+\frac{h}{x}\right)^{\frac{x}{h}}\right]^{\frac{1}{x}}\right\}

=x^x \left(\ln x +1\right)
 
Last edited:
  • Like
Likes Cristopher and Cristopher1
wow .
 
dextercioby said:
Either this is unreasonable, or your imagination really needs to see more:

x^x =e^{x\ln x}

\lim_{h\rightarrow 0} \frac{(x+h)^{(x+h)}-x^x}{h} =\lim_{h\rightarrow 0} \frac{e^{(x+h)\ln(x+h)}-e^{x\ln x}}{h}=\lim_{h\rightarrow 0}\frac{e^{(x+h)\ln\left(x\left(1+\frac{h}{x}\right)\right)}-e^{x\ln x}}{h}

=\lim_{h\rightarrow 0} \frac{e^{x\ln x}e^{h\ln x}e^{x\ln\left(1+\frac{h}{x}\right)}e^{h\ln\left(1+\frac{h}{x}\right)}-e^{x\ln x}}{h}

=x^{x}\lim_{h\rightarrow 0}\frac{e^{h\ln x}e^{x\ln\left(1+\frac{h}{x}\right)}e^{h\ln\left(1+\frac{h}{x}\right)}-1}{h}\cdot \frac{h\ln x+x\ln\left(1+\frac{h}{x}\right)+h\ln\left(1+\frac{h}{x}\right)}{h\ln x+x\ln\left(1+\frac{h}{x}\right)+h\ln\left(1+\frac{h}{x}\right)}

=x^{x}\left[\ln x+x\lim_{h\rightarrow 0}\frac{\ln\left(1+\frac{h}{x}\right)}{h}+\lim_{h\rightarrow 0}\ln\left(1+\frac{h}{x}\right)\right]

=x^x \left\{\ln x+x\ln \lim_{h\rightarrow 0}\left[\left(1+\frac{h}{x}\right)^{\frac{x}{h}}\right]^{\frac{1}{x}}\right\}

=x^x \left(\ln x +1\right)

Whoa. :bugeye:
Or somewhat easier. That's a little bit messy methinks: o:)
(x ^ x)' = (e ^ {x \ln (x)})' = \lim_{h \rightarrow 0} \frac{e ^ {(x + h) \ln (x + h)} - e ^ {x \ln (x)}}{h}

= \lim_{h \rightarrow 0} \left( \frac{e ^ {(x + h) \ln (x + h)} - e ^ {x \ln (x)}}{(x + h) \ln (x + h) - x \ln x} \times \frac{(x + h) \ln (x + h) - x \ln x}{h} \right)

= e ^ {x \ln (x)} \left( \lim_{h \rightarrow 0} \frac{x \ln (1 + \frac{h}{x}) + h \ln (x + h)}{h} \right) [due to: (eu)'u = eu]

= x ^ x \left\{ \lim_{h \rightarrow 0} \left[ x \ln \left( \left( 1 + \frac{h}{x} \right) ^ {\frac{x}{h}} \right) ^ {\frac{1}{x}} \right] + \ln (x) \right\}

= x ^ x (1 + \ln (x))
 
Last edited:
Since the original equation is x^x and never a division quotient, one can not apply that rule. Here is the alternative proof.
 

Attachments

Raiey said:
Since the original equation is x^x and never a division quotient, one can not apply that rule.

"Difference quotient" means this:
<br /> \frac{f(x)-f(a)}{x-a}<br />
so the assignment was to use the definition of derivative that involves this.
 
An answer is attached in PDF
 

Attachments

Back
Top