How do I integrate trigonometric functions raised to even powers?

Dustinsfl
Messages
2,217
Reaction score
5
Inner product:

\displaystyle <f,g>=\frac{1}{\pi}\int_{-\pi}^{\pi}fg \ dx=\begin{cases}0 & \ \text{if} \ f=g\\1 & \ \text{if} \ f\neq g\end{cases}

Basis:
\displaystyle\left\{\frac{1}{\sqrt{2}},\cos\theta, \sin\theta,\cdots\right\}

I am trying to remember how to integrals of the form:

\displaystyle \int_{-\pi}^{\pi}\sin^{a}\theta\cos^b (2\theta) \ d\theta

However, I getting no where.

I left some guidance with these two integrals and I should be good to go then.

\displaystyle\int_{-\pi}^{\pi}\sin^4\theta \ d\theta

\Rightarrow\int_{-\pi}^{\pi}\left(\frac{1}{2}-\frac{\cos(2\theta)}{2}\right)^2 \ d\theta

\Rightarrow \int_{-\pi}^{\pi}\left(\left(\frac{1}{\sqrt{2}}\right)^2-\frac{\cos(2\theta)}{2}\right)^2 \ d\theta

Now, I am drawing a blank.

The other one I need guidance on is:

\displaystyle\int_{-\pi}^{\pi}\sin^4\theta\cos(2\theta) \ d\theta

\Rightarrow\int_{-\pi}^{\pi}\left(\left(\frac{1}{\sqrt{2}}\right)^2-\frac{\cos(2\theta)}{2}\right)^2\cos(2\theta) \ d\theta

\Rightarrow\int_{-\pi}^{\pi}\frac{\cos(4\theta)\cos(2\theta)}{4} \ d\theta

Now I am stuck again.
 
Last edited:
Physics news on Phys.org
Dustinsfl said:
The other one I need guidance on is:

\displaystyle\int_{-\pi}^{\pi}\sin^4\theta\cos(2\theta) \ d\theta

\Rightarrow\int_{-\pi}^{\pi}\left(\left(\frac{1}{\sqrt{2}}\right)^2-\frac{\cos(2\theta)}{2}\right)^2\cos(2\theta) \ d\theta

\Rightarrow\int_{-\pi}^{\pi}\frac{\cos(4\theta)\cos(2\theta)}{4} \ d\theta

Now I am stuck again.

Bad math:

\int_{-\pi}^{\pi}\sin^4\theta\cos(2\theta) \ d\theta=
\int_{-\pi}^{\pi}\left[\frac{\cos(2\theta)}{4}-\frac{\cos^2(2\theta)}{2}+\frac{\cos(2\theta)* \cos^2(2\theta)}{4}\right] \ d\theta=
\int_{-\pi}^{\pi}\left[\frac{\cos(2\theta)}{4}-\left(\frac{1}{4}+\frac{\cos(4\theta)}{4}\right)+\frac{\cos(2\theta)}{8}+\frac{\cos(2\theta)*\cos(4\theta)}{8}\right] \ d\theta
(the Latex is correct so I don't know why it is all jacked up)

\int_{-\pi}^{\pi}\left[\frac{3\cos(2\theta)}{8}-\frac{1}{4}-\frac{\cos(4\theta)}{4}+\frac{\cos(2\theta)*\cos(4\theta)}{8}\right] \ d\theta
 
Can anyone provide any guidance?
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top