Dustinsfl
- 2,217
- 5
Inner product:
\displaystyle <f,g>=\frac{1}{\pi}\int_{-\pi}^{\pi}fg \ dx=\begin{cases}0 & \ \text{if} \ f=g\\1 & \ \text{if} \ f\neq g\end{cases}
Basis:
\displaystyle\left\{\frac{1}{\sqrt{2}},\cos\theta, \sin\theta,\cdots\right\}
I am trying to remember how to integrals of the form:
\displaystyle \int_{-\pi}^{\pi}\sin^{a}\theta\cos^b (2\theta) \ d\theta
However, I getting no where.
I left some guidance with these two integrals and I should be good to go then.
\displaystyle\int_{-\pi}^{\pi}\sin^4\theta \ d\theta
\Rightarrow\int_{-\pi}^{\pi}\left(\frac{1}{2}-\frac{\cos(2\theta)}{2}\right)^2 \ d\theta
\Rightarrow \int_{-\pi}^{\pi}\left(\left(\frac{1}{\sqrt{2}}\right)^2-\frac{\cos(2\theta)}{2}\right)^2 \ d\theta
Now, I am drawing a blank.
The other one I need guidance on is:
\displaystyle\int_{-\pi}^{\pi}\sin^4\theta\cos(2\theta) \ d\theta
\Rightarrow\int_{-\pi}^{\pi}\left(\left(\frac{1}{\sqrt{2}}\right)^2-\frac{\cos(2\theta)}{2}\right)^2\cos(2\theta) \ d\theta
\Rightarrow\int_{-\pi}^{\pi}\frac{\cos(4\theta)\cos(2\theta)}{4} \ d\theta
Now I am stuck again.
\displaystyle <f,g>=\frac{1}{\pi}\int_{-\pi}^{\pi}fg \ dx=\begin{cases}0 & \ \text{if} \ f=g\\1 & \ \text{if} \ f\neq g\end{cases}
Basis:
\displaystyle\left\{\frac{1}{\sqrt{2}},\cos\theta, \sin\theta,\cdots\right\}
I am trying to remember how to integrals of the form:
\displaystyle \int_{-\pi}^{\pi}\sin^{a}\theta\cos^b (2\theta) \ d\theta
However, I getting no where.
I left some guidance with these two integrals and I should be good to go then.
\displaystyle\int_{-\pi}^{\pi}\sin^4\theta \ d\theta
\Rightarrow\int_{-\pi}^{\pi}\left(\frac{1}{2}-\frac{\cos(2\theta)}{2}\right)^2 \ d\theta
\Rightarrow \int_{-\pi}^{\pi}\left(\left(\frac{1}{\sqrt{2}}\right)^2-\frac{\cos(2\theta)}{2}\right)^2 \ d\theta
Now, I am drawing a blank.
The other one I need guidance on is:
\displaystyle\int_{-\pi}^{\pi}\sin^4\theta\cos(2\theta) \ d\theta
\Rightarrow\int_{-\pi}^{\pi}\left(\left(\frac{1}{\sqrt{2}}\right)^2-\frac{\cos(2\theta)}{2}\right)^2\cos(2\theta) \ d\theta
\Rightarrow\int_{-\pi}^{\pi}\frac{\cos(4\theta)\cos(2\theta)}{4} \ d\theta
Now I am stuck again.
Last edited: